Antiviral research
-
Seasonal influenza viruses impact public health annually due to their continual evolution. However, the current inactivated seasonal vaccines provide poor protection against antigenically drifted viruses and require periodical reformulation through hit-and-miss predictions about which strains will circulate during the next season. To reduce the impact caused by vaccine mismatch, we investigated the drift-tolerance of virus-like particles (VLP) as an improved vaccine candidate. ⋯ Noticeably, H3N2-VLP elicited higher levels of anti-stalk antibodies than H3N2-WIV, which offset the ineffectiveness caused by antigenic drift. This advantageous effect was attributed to the uncleaved precursor of their HA proteins. These results suggest a mechanism through which VLP-induced humoral immunity may better tolerate the evolutionary dynamics of influenza viruses and point to the possible use of a VLP vaccine as a method by which the requirement for annual updates of seasonal influenza vaccines may be diminished.