Seminars in nephrology
-
Seminars in nephrology · Jan 2015
ReviewExtracorporeal renal replacement therapies in the treatment of sepsis: where are we?
Acute kidney injury (AKI) is common among the critically ill, affecting approximately 40% of patients. Sepsis is the cause of AKI in almost 50% of cases of intensive care patients, however, any evidence-based treatment for sepsis-associated AKI is lacking. Furthermore, the underlying pathophysiology of septic AKI is inadequately understood given the disparity between severe functional changes and limited tubular injury. ⋯ We consider the classic aspects of extracorporeal renal replacement therapy including indications, timing, and delivered dose. The various techniques that currently are used to try and achieve immune homeostasis also are outlined. As well as discussing the evidence accumulated to date, we also suggest possibilities for the future treatment of our patients.
-
Acute kidney injury (AKI) occurs frequently in critically ill patients with sepsis, in whom it doubles the mortality rate and half of the survivors suffer permanent kidney damage or chronic kidney disease. Failure in the development of viable therapies has prompted studies to better elucidate the cellular and molecular etiologies of AKI, which have generated novel theories and paradigms for the mechanisms of this disease. ⋯ It is becoming clear that a major etiologic effector of all these inputs is the renal tubule epithelial cell (RTEC). This review discusses these elements and their effects on RTECs, and reviews the current hypotheses of how these effects may determine the fate of RTECs during sepsis-induced AKI.
-
Seminars in nephrology · Jan 2015
ReviewSepsis-associated acute kidney injury: macrohemodynamic and microhemodynamic alterations in the renal circulation.
Traditionally, renal ischemia has been regarded as central to the pathogenesis of sepsis-associated acute kidney injury (SA-AKI). Accordingly, hemodynamic management of SA-AKI has emphasized restoration of renal perfusion, whereas, experimentally, ischemia reperfusion models have been emphasized. ⋯ Moreover, clinical and experimental evidence now suggests the importance of inflammatory mechanisms in the development of AKI and microcirculatory dysfunction more than systemic alteration in renal perfusion. In this review, we examine systemic, regional, and microcirculatory hemodynamics in SA-AKI, and attempt to rationalize the hemodynamic management of this condition.
-
Seminars in nephrology · Jan 2015
ReviewEntanglement of sepsis, chronic kidney disease, and other comorbidities in patients who develop acute kidney injury.
Acute kidney injury (AKI) is a common and severe complication for patients in the intensive care setting, often occurring in the setting of sepsis. Both sepsis and AKI are complex and heterogeneous syndromes with overlapping risk factors. Comorbidities - such as chronic kidney disease, diabetes mellitus, liver disease, cardiac disease and cancer - may contribute to the development of these syndromes and complicate their management. Recognition of the complex interplay between comorbid conditions, sepsis, and AKI is key to the successful management of these syndromes.
-
Seminars in nephrology · May 2014
ReviewPrediction and management of hyperkalemia across the spectrum of chronic kidney disease.
Hyperkalemia commonly limits optimizing treatment to slow stage 3 or higher chronic kidney disease (CKD) progression. The risk of hyperkalemia is linked to dietary potassium intake, level of kidney function, concomitant diseases that may affect potassium balance such as diabetes, and use of medications that influence potassium excretion. The risk predictors for developing hyperkalemia are an estimated glomerular filtration rate of less than 45 mL/min/1.73 m(2) and a serum potassium level greater than 4.5 mEq/L in the absence of blockers of the renin-angiotensin-aldosterone system (RAAS). ⋯ Moreover, dual RAAS blockade further reduces albuminuria by 25% to 30% compared with monotherapy, it has failed to show a benefit on CKD progression or cardiovascular outcome, and thus is not indicated in such patients because of its marked increase in hyperkalemia potential. Although sodium polystyrene resins exist to manage hyperkalemia in patients requiring therapy that increases serum potassium levels, they are not well tolerated. Newer, more predictable, better-tolerated polymers to bind potassium are on the horizon and may be approved within the next 1 to 2 years.