Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
-
J. Cereb. Blood Flow Metab. · Nov 1997
Early white blood cell dynamics after traumatic brain injury: effects on the cerebral microcirculation.
Increasing clinical and experimental evidence suggests that traumatic brain injury (TBI) elicits an acute inflammatory response. In the present study we investigated whether white blood cells (WBC) are activated in the cerebral microcirculation early after TBI and whether WBC accumulation affects the posttraumatic cerebrovascular response. Twenty-four anesthetized rabbits had chronic cranial windows implanted 3 weeks before experimentation. ⋯ White blood cell activation is associated with pial arteriolar vasodilation. White blood cells do not induce BBB breakdown less than 6 hours after TBI and do not contribute to posttraumatic ICP elevation. The role of WBC more than 6 hours after TBI should be investigated further.
-
J. Cereb. Blood Flow Metab. · Nov 1997
Functional activation of cerebral blood flow after cardiac arrest in rat.
After a period of global cerebral ischemia, CO2 reactivity and the hemodynamic-metabolic activation to functional stimulation are transiently suppressed. This raises the question of whether the impaired functional coupling reflects disturbances of functional integrity of the brain or an impaired cerebrovascular reactivity. We, therefore, compared the recovery of CO2 reactivity with that of somatosensory evoked potentials, functional flow activation and neurologic deficits in a rodent model of cardiac arrest-induced cerebral ischemia, followed by up to 7 days of reperfusion. ⋯ Linear regression analysis revealed a significant correlation between recovery of functional activation of blood flow and both recovery of the amplitude of somatosensory evoked potentials (P = 0.03) and the neurologic deficit score (P = 0.02), but not between neurologic deficit score and recovery of CO2 reactivity or somatosensory evoked potential amplitudes. These data demonstrate that the suppression of functional activation of blood flow after 10 minutes cardiac arrest is not related to impairment of coupling mechanisms but reflects ongoing disturbances of the functional integrity of the brain. Assessment of functional flow coupling is a reliable way to study postischemic recovery of the brain.
-
J. Cereb. Blood Flow Metab. · Nov 1997
Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase.
Poly(ADP-ribose)polymerase (PARP, EC 2.4.2.30), an abundant nuclear protein activated by DNA nicks, mediates cell death in vitro by nicotinamide adenine dinucleotide (NAD) depletion after exposure to nitric oxide. The authors examined whether genetic deletion of PARP (PARP null mice) or its pharmacologic inhibition by 3-aminobenzamide (3-AB) attenuates tissue injury after transient cerebral ischemia. Twenty-two hours after reperfusion following 2 hours of filamentous middle cerebral artery occlusion, ischemic injury was decreased in PARP-/- and PARP+/- mice compared with PARP+/+ litter mates, and also was attenuated in 129/SV wild-type mice after 3-AB treatment compared with controls. ⋯ Markers of apoptosis, such as oligonucleosomal DNA damage, total DNA fragmentation, and the density of terminal deoxynucleotidyl transferase dUTP nick-end-labelled (TUNEL +) cells, however, did not differ in ischemic brain tissue of PARP-/- mice or in 3-AB-treated animals versus controls, although there were differences in the number of TUNEL-stained cells reflecting the decrease in infarct size. Thus, ischemic brain injury activates PARP and contributes to cell death most likely by NAD depletion and energy failure, although the authors have not excluded a role for PARP in apoptotic cell death at earlier or later stages in ischemic cell death. Inhibitors of PARP activation could provide a potential therapy in acute stroke.