Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
-
J. Cereb. Blood Flow Metab. · Jul 2001
Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage.
A zone of hypoperfusion surrounding acute intracerebral hemorrhage (ICH) has been interpreted as regional ischemia. To determine if ischemia is present in the periclot area, the authors measured cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO2), and oxygen extraction fraction (OEF) with positron emission tomography (PET) in 19 patients 5 to 22 hours after hemorrhage onset. Periclot CBF, CMRO2, and OEF were determined in a 1-cm-wide area around the clot. ⋯ Periclot OEF was less than both hemispheric OEF (0.42 +/- 0.15 vs. 0.47 +/- 0.13, P = 0.05; n = 19) and contralateral regional OEF (0.44 +/- 0.16 vs. 0.51 +/- 0.13, P = 0.05; n = 16). In conclusion, CMRO2 was reduced to a greater degree than CBF in the periclot region in acute ICH, resulting in reduced OEF rather than the increased OEF that occurs in ischemia. Thus, the authors found no evidence for ischemia in the periclot zone of hypoperfusion in acute ICH patients studied 5 to 22 hours after hemorrhage onset.
-
J. Cereb. Blood Flow Metab. · Jul 2001
Uncoupling of cerebral blood flow and metabolism after cerebral contusion in the rat.
Positron emission tomography scans of patients with head injuries often show discrete areas of increased 18F-fluorodeoxyglucose uptake ("hot spots") when performed hours to days after the initial ictus. Using quantitative autoradiographic methods, the authors have investigated whether cerebral blood flow and glucose metabolism are uncoupled 2 hours after controlled head injury in an animal model, and whether any "hot spots" are accompanied by changes in cerebral glucose concentration. Experiments were performed on 18 anesthetized, ventilated (1.5% halothane in 2:1 nitrous oxide:oxygen) Sprague-Dawley rats weighing 300 to 330 g. ⋯ In all six rats used for LCGU measurement, there were discrete areas of high metabolism, whereas in all six rats used for LCBF measurement, flow was universally depressed in the boundary zone. Of the six rats used for LCGC determination, there was a discrete area of high signal in only one. The authors conclude that there are discrete areas of uncoupling of cerebral blood flow and metabolism after head injury within 2 hours of cerebral contusion in the rat that cannot be explained by changes in cerebral glucose content in the majority of animals.
-
J. Cereb. Blood Flow Metab. · Jul 2001
Delayed hemorrhagic hypotension exacerbates the hemodynamic and histopathologic consequences of traumatic brain injury in rats.
Alterations in cerebral autoregulation and cerebrovascular reactivity after traumatic brain injury (TBI) may increase the susceptibility of the brain to secondary insults, including arterial hypotension. The purpose of this study was to evaluate the consequences of mild hemorrhagic hypotension on hemodynamic and histopathologic outcome after TBI. Intubated, anesthetized male rats were subjected to moderate (1.94 to 2.18 atm) parasagittal fluid-percussion (FP) brain injury. ⋯ Compared with normotensive TBI rats, hemodynamic depression was significantly greater with induced hypotension in the histopathologically vulnerable (P1) posterior parietal cortex (P < 0.01). Secondary hypotension also increased contusion area at specific bregma levels compared with normotensive TBI rats (P < 0.05), as well as overall contusion volume (0.96 +/- 0.46 mm(3) vs. 2.02 +/- 0.51 mm(3), mean +/- SD, P < 0.05). These findings demonstrate that mild hemorrhagic hypotension after FP injury worsens local histopathologic outcome, possibly through vascular mechanisms.