Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
-
J. Cereb. Blood Flow Metab. · Feb 2013
Clinical TrialHigher coated-platelet levels are associated with stroke recurrence following nonlacunar brain infarction.
Coated-platelets are procoagulant platelets observed upon dual-agonist stimulation with collagen and thrombin. Coated-platelet levels are elevated in patients with nonlacunar (large-vessel) ischemic stroke and decreased in patients with spontaneous intracerebral hemorrhage as compared with controls. The purpose of this study was to investigate a possible relationship between coated-platelet levels and stroke recurrence in patients with nonlacunar ischemic stroke. ⋯ The cumulative incidence of recurrent stroke at 12 months differed among the coated-platelet tertiles: 2% for the first tertile (lowest coated-platelet levels), 18% for the second tertile, and 17% for the third tertile (overall log-rank test, P=0.019). These data suggest that higher levels of coated-platelets, measured shortly after a nonlacunar stroke, are associated with an increased incidence of stroke recurrence. This observation offers an additional tool for identifying patients at highest risk for stroke recurrence following a nonlacunar (large-vessel) infarct.
-
J. Cereb. Blood Flow Metab. · Feb 2013
Critical closing pressure determined with a model of cerebrovascular impedance.
Critical closing pressure (CCP) is the arterial blood pressure (ABP) at which brain vessels collapse and cerebral blood flow (CBF) ceases. Using the concept of impedance to CBF, CCP can be expressed with brain-monitoring parameters: cerebral perfusion pressure (CPP), ABP, blood flow velocity (FV), and heart rate. The novel multiparameter method (CCPm) was compared with traditional transcranial Doppler (TCD) calculations of CCP (CCP1). ⋯ Overall, CCP1 and CCPm showed correlation across wide ranges of ABP, ICP, and PaCO2 (R=0.93, P<0.001). Three physiological perturbations were studied: increase in ICP (n=29) causing both CCP1 and CCPm to increase (P<0.001 for both); reduction of ABP (n=10) resulting in decrease of CCP1 (P=0.006) and CCPm (P=0.002); and controlled increase of PaCO2 (n=8) to hypercapnic levels, which decreased CCP1 and CCPm, albeit insignificantly (P=0.123 and P=0.306 respectively), caused by a spontaneous significant increase in ABP (P=0.025). Multiparameter mathematical model of critical closing pressure explains the relationship of CCP on brain-monitoring variables, allowing the estimation of CCP during cases such as hypercapnia-induced hyperemia, where traditional calculations, like CCP1, often reach negative non-physiological values.
-
J. Cereb. Blood Flow Metab. · Feb 2013
Early brain injury alters the blood-brain barrier phenotype in parallel with β-amyloid and cognitive changes in adulthood.
Clinical studies suggest that traumatic brain injury (TBI) hastens cognitive decline and development of neuropathology resembling brain aging. Blood-brain barrier (BBB) disruption following TBI may contribute to the aging process by deregulating substance exchange between the brain and blood. We evaluated the effect of juvenile TBI (jTBI) on these processes by examining long-term alterations of BBB proteins, β-amyloid (Aβ) neuropathology, and cognitive changes. ⋯ In parallel, we observed higher levels of endogenous rodent Aβ in several brain regions of the jTBI group versus shams. In addition at 60 dpi, jTBI animals displayed systematic search strategies rather than relying on spatial memory during the water maze. Together, these alterations to the BBB phenotype after jTBI may contribute to the accumulation of toxic products, which in turn may induce cognitive differences and ultimately accelerate brain aging.