Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
-
J. Cereb. Blood Flow Metab. · Sep 2017
MRI-based mismatch detection in acute ischemic stroke: Optimal PWI maps and thresholds validated with PET.
Perfusion-weighted (PW) magnetic resonance imaging (MRI) is used to detect penumbral tissue in acute stroke, but the selection of optimal PW-maps and thresholds for tissue at risk detection remains a matter of debate. We validated the performance of PW-maps with 15O-water-positron emission tomography (PET) in a large comparative PET-MR cohort of acute stroke patients. In acute and subacute stroke patients with back-to-back MRI and PET imaging, PW-maps were validated with 15O-water-PET. ⋯ A receiver operating characteristic (ROC) curve analysis was performed to specify the accuracy and the optimal critical flow threshold of each PW-map as defined by PET. In 53 patients, (stroke to imaging: 9.8 h; PET to MRI: 52 min) PW-time-to-maximum (Tmax) with a threshold >6.1 s (AUC = 0.94) and non-deconvolved PW-time-to-peak (TTP) >4.8 s (AUC = 0.93) showed the best performance to detect the CF threshold as defined by PET. PW-Tmax with a threshold >6.1 s and TTP with a threshold >4.8 s are the most predictive in detecting the CF threshold for MR-based mismatch definition.
-
J. Cereb. Blood Flow Metab. · Sep 2017
Intranasal insulin treatment of an experimental model of moderate traumatic brain injury.
Traumatic brain injury (TBI) results in learning and memory dysfunction. Cognitive deficits result from cellular and metabolic dysfunction after injury, including decreased cerebral glucose uptake and inflammation. This study assessed the ability of intranasal insulin to increase cerebral glucose uptake after injury, reduce lesion volume, improve memory and learning function and reduce inflammation. ⋯ A significant increase in [18F]-FDG uptake was observed in the hippocampus. Intranasal insulin also resulted in a significant decrease in hippocampus lesion volume and significantly less microglial immunolabeling in the hippocampus. These data show that intranasal insulin improves memory, increases cerebral glucose uptake and decreases neuroinflammation and hippocampal lesion volume, and may therefore be a viable therapy for TBI.