Brazilian journal of medical and biological research = Revista brasileira de pesquisas médicas e biológicas
-
Braz. J. Med. Biol. Res. · May 2012
Coping with genetic diversity: the contribution of pathogen and human genomics to modern vaccinology.
Vaccine development faces major difficulties partly because of genetic variation in both infectious organisms and humans. This causes antigenic variation in infectious agents and a high interindividual variability in the human response to the vaccine. The exponential growth of genome sequence information has induced a shift from conventional culture-based to genome-based vaccinology, and allows the tackling of challenges in vaccine development due to pathogen genetic variability. ⋯ Accumulating results provide evidence for the existence of a number of genes involved in protective immune responses that are induced either by natural infections or vaccines. Variation in immune responses could be viewed as the result of a perturbation of gene networks; this should help in understanding how a particular polymorphism or a combination thereof could affect protective immune responses. Here we will present: i) the first genome-based vaccines that served as proof of concept, and that provided new critical insights into vaccine development strategies; ii) an overview of genetic predisposition in infectious diseases and genetic control in responses to vaccines; iii) population genetic differences that are a rationale behind group-targeted vaccines; iv) an outlook for genetic control in infectious diseases, with special emphasis on the concept of molecular networks that will provide a structure to the huge amount of genomic data.
-
Braz. J. Med. Biol. Res. · May 2012
Lymphatic fluctuation in the parenchymal remodeling stage of acute interstitial pneumonia, organizing pneumonia, nonspecific interstitial pneumonia and idiopathic pulmonary fibrosis.
Because the superficial lymphatics in the lungs are distributed in the subpleural, interlobular and peribroncovascular interstitium, lymphatic impairment may occur in the lungs of patients with idiopathic interstitial pneumonias (IIPs) and increase their severity. We investigated the distribution of lymphatics in different remodeling stages of IIPs by immunohistochemistry using the D2-40 antibody. Pulmonary tissue was obtained from 69 patients with acute interstitial pneumonia/diffuse alveolar damage (AIP/DAD, N = 24), cryptogenic organizing pneumonia/organizing pneumonia (COP/OP, N = 6), nonspecific interstitial pneumonia (NSIP/NSIP, N = 20), and idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP, N = 19). ⋯ Lymphatic impairment occurs in the lungs of IIPs and its severity increases according to remodeling stage. The results suggest that disruption of the superficial lymphatics may impair alveolar clearance, delay organ repair and cause severe disease progress mainly in patients with AIP/DAD. Therefore, lymphatic distribution may serve as a surrogate marker for the identification of patients at greatest risk for death due to IIPs.