Cellular and molecular neurobiology
-
Cell. Mol. Neurobiol. · Aug 2005
Morphological alterations and cell death provoked by the branched-chain alpha-amino acids accumulating in maple syrup urine disease in astrocytes from rat cerebral cortex.
1. Maple syrup urine disease (MSUD) is an inherited metabolic disorder predominantly characterized by neurological dysfunction and cerebral atrophy whose patophysiology is poorly known. 2. We investigated here whether the branched-chain amino acids (BCAA) leucine (Leu), isoleucine (Ile) and valine (Val), which are the biochemical hallmark of this disorder, could alter astrocyte morphology and cytoskeleton reorganization by exposing cultured astrocytes from cerebral cortex of neonatal rats to various concentrations of the amino acids. ⋯ In addition, lysophosphatidic acid, an activator of RhoA GTPase pathway, was able to totally prevent the morphological alterations and cytoskeletal reorganization induced by Val, indicating that the RhoA signaling pathway was involved in these effects. 4. Furthermore, creatine attenuated the morphological alterations provoked by the BCAA, the protection being more pronounced for Val, suggesting that impairment of energy homeostasis is partially involved in BCAA cytotoxic action. The data indicate that the BCAA accumulating in MSUD are toxic to astrocyte cells, a fact that may be related to the pathogenesis of the neurological dysfunction of MSUD patients.
-
Cell. Mol. Neurobiol. · Aug 2005
NSE-controlled carboxyl-terminus of APP gene over-expressing in transgenic mice induces altered expressions in behavior, Abeta-42, and GSK3beta binding proteins.
The amyloid protein precursor (APP) is cleaved in its intramembranous domain by gamma-secrease to generate amyloid beta and a free carboxyl-terminal intracellular fragment. The carboxyl-terminal of 105 amino acids of APP (APP-C105) plays a crucial role in the neuropathology of Alzheimer's disease (AD), but it is incompletely understand how APP-C105 overexpression interacts and regulates the brain function and Abeta-42 levels, and whether or not it is associated with the expressions of GSK3beta-binding proteins. ⋯ In parallel, APP-C105 overexpression resulted in the modulation of the Abeta-42 level, gamma-secretase activity, GSK3beta-binding proteins including PS1, tau, and beta-catenin in the brains of the transgenic mice relative to the non-transgenic mice. Thus, altered expressions of these neuropathological phenotypes in APP-C105 transgenic mice could be useful targets in developing new therapeutic treatments.