Cellular and molecular neurobiology
-
Cell. Mol. Neurobiol. · Feb 2008
The role of TNF-alpha and its receptors in the production of beta-1,4-galactosyltransferase I mRNA by rat primary type-2 astrocytes.
beta-1,4-galactosyltransferase I (beta-1,4-GalT I) plays an important role in the synthesis of the backbone structure of adhesion molecules involved in leukocyte-endothelial cell interaction. The expression of beta-1,4-GalT I mRNA increased in primary human endothelial cells after exposure to tumor necrosis factor-alpha (TNF-alpha). In the central nervous system (CNS), astrocytes play a pivotal role in immunity as immunocompetent cells by secreting cytokines and inflammatory mediators, there are two types of astrocytes. ⋯ From these results, we conclude that TNF-alpha signaling via both TNFR1 and TNFR2 translocated from nucleus to cytoplasm or processes is sufficient to induce beta-1,4-GalT I mRNA. In addition, we observed that not only exogenous TNF-alpha but also TNF-alpha produced by type-2 astrocytes affected beta-1,4-GalT I mRNA production in type-2 astrocytes. These results suggest that an autocrine loop involving TNF-alpha contributes to the production of beta-1,4-GalT I mRNA in response to inflammation.