Nuclear medicine communications
-
The correlation between a 131I whole-body scan (WBS), a 99mTc sestamibi (99mTc-MIBI) WBS, a computed tomography (CT) scan and the value of routine follow-up for 131I WBS and thyroglobulin (Tg) levels in patients with lung metastases from differentiated thyroid cancer was assessed. ⋯ 131I whole-body scanning and the determination of Tg levels are the most important procedures for the evaluation of lung metastases in differentiated thyroid cancer. Computed tomography is a useful addition to 131I whole-body scanning. MIBI imaging alone may not be enough to detect lung metastases from differentiated thyroid cancer.
-
Impure positron emitters have physical characteristics that degrade image quality compared to conventional positron emitters like 18F. Two impure positron emitters with potentially interesting applications are 124I and 86Y. The degradation in image quality due to the imperfection of these isotopes is quantified for a human three-dimensional (3-D) positron emission tomography (PET) system. An acquisition protocol to obtain similar image quality as for 18F imaging is determined by Monte Carlo simulations. ⋯ 3-D PET images of 124I and 86Y have lower spatial resolution. For PET scanners used for humans the difference is not as important as for scanners used for animals. The limited positron decay fraction of both isotopes can be compensated by increasing the imaging time by a factor of 3-5 (same activity). A short coincidence window limits the contamination from other decay modes. Good energy resolution allows setting a selective upper energy threshold to limit the effect of spurious coincidences. With an appropriate setting of the energy window it should be possible to obtain good image quality in a relatively short time because of the high sensitivity of 3-D PET scanners.