Journal of cellular biochemistry
-
Emerging evidence has shown that GSK3beta plays a pivotal role in regulating the specification of axons and dendrites. Our previous study has shown a novel GSK3beta interaction protein (GSKIP) able to negatively regulate GSK3beta in Wnt signaling pathway. To further characterize how GSKIP functions in neurons, human neuroblastoma SH-SY5Y cells treated with retinoic acid (RA) to differentiate to neuron-like cells was used as a model. ⋯ Additionally, overexpression of GSKIP downregulates N-cadherin expression, resulting in decreased recruitment of beta-catenin. Moreover, depletion of beta-catenin by small interfering RNA, neurite outgrowth is blocked in SH-SY5Y cells. Altogether, we propose a model to show that GSKIP regulates the functional interplay of the GSK3beta/beta-catenin, beta-catenin/cyclin D1, and beta-catenin/N-cadherin pool during RA signaling in SH-SY5Y cells.