Biomedicine & pharmacotherapy = Biomédecine & pharmacothérapie
-
Coronaviruses (CoVs) are a member of the Coronaviridae family with positive-sense single- stranded RNA. In recent years, the CoVs have become a global problem to public health. ⋯ Gaining profound understanding about the interaction between CoVs and the innate and adaptive immune systems could be a critical step in the field of treatment. In this review, we present an update on the host innate and adaptive immune responses against SARS-CoV, MERS-CoV and newly appeared SARS-CoV-2.
-
Biomed. Pharmacother. · Dec 2020
Tongmai formula improves cardiac function via regulating mitochondrial quality control in the myocardium with ischemia/reperfusion injury.
Mitochondrial quality control, regulated by mitochondrial dynamics and mitophagy, has been regarded as pivotal process to induce segregation of mitochondria during myocardial ischemia/reperfusion (I/R) injury. However, few works revealed the regulation of mitochondrial quality control by therapeutic agents. Tongmai formula (TM) is a clinically used botanical drug for treating cardiovascular diseases, which mechanism is unveiled. Thus, in this study, we investigated the pharmacological effects of TM on modulating mitochondrial quality control during cardiac injury. ⋯ TM exhibited cardiac protective effect on ischemic myocardium of rats after reperfusion and improved mitochondrial quality control through mitochondrial dynamics in NRVMs after H/R injury.
-
Biomed. Pharmacother. · Nov 2020
ReviewThe role of IL-1β and TNF-α in intervertebral disc degeneration.
Low back pain (LBP), a prevalent and costly disease around the world, is predominantly caused by intervertebral disc (IVD) degeneration (IDD). LBP also presents a substantial burden to public health and the economy. IDD is mainly caused by aging, trauma, genetic susceptibility, and other factors. ⋯ Therefore, anti-IL-1β and anti-TNF-α therapies may have the potential to alleviate disc degeneration and LBP. In this paper, we reviewed the expression pattern and signal transduction pathways of IL-1β and TNF-α, and we primarily focused on their similar and different roles in IDD. Because IL-1β and TNF-α inhibition have the potential to alleviate IDD, an in-depth understanding of the role of IL-1β and TNF-α in IDD will benefit the development of new treatment methods for disc degeneration with IL-1β and TNF-α at the core.
-
Biomed. Pharmacother. · Nov 2020
ReviewInsights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2.
Coronavirus disease 2019 (COVID-19) is a kind of viral pneumonia with an unusual outbreak in Wuhan, China, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There is currently no licensed antiviral treatment available to prevent human CoV infection. The widespread clinical use and existing knowledge on antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine in the treatment of previous epidemic diseases, namely, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), may be helpful in the combat with novel SARS-CoV-2 infection. ⋯ Chloroquine/Hydroxychloroquine could impair the replication of SARSCoV-2 by multiple mechanisms and their immunomodulatory properties could ameliorate clinical manifestations that are mediated by immune reactions of the host although its beneficial effects are under question and need to be proven at the clinical level. Existing in vitro and in vivo evidence delineate the molecular mechanisms of these drugs in CoV-infected cells. Numerous studies demonstrated the ability of remdesivir to inhibit SARS-CoV-2 replication but future research would be needed to understand the exact mode of action of lopinavir/ritonavir and chloroquine/hydroxychloroquine in SARS-CoV-2 infected cells and to use this knowledge in the treatment of the current COVID-19.
-
Biomed. Pharmacother. · Nov 2020
Comparative StudyIn vitro and in vivo antimicrobial activities of a novel piperazine-containing benzothiazinones candidate TZY-5-84 against Mycobacterium tuberculosis.
A piperazine-containing benzothiazinones lead compound PBTZ169, served as DprE1 inhibitor, displays nanomolar bactericidal activity against Mycobacteria tuberculosis. Here, we systematically evaluate anti-tuberculosis activity of one of PBTZ169 analogues, TZY-5-84, in vitro and in vivo. The MIC value of TZY-5-84 against M. tuberculosis H37Rv ranged from 0.014 to 0.015 mg/L, lower than those of INH, RFP and BDQ. ⋯ No antagonism was observed in any combination between TZY-5-84 and seven commonly used anti-tuberculosis drugs in an in vitro checkerboard assay. In murine infection model, TZY-5-84 at lower dosage (12.5 mg/kg) was found to be comparatively efficacious as PBTZ169 at 25 mg/kg. Our research suggests TZY-5-84 can be a promising preclinical candidate for further study on TB treatment.