Magnetic resonance imaging
-
To explore the diffusion and kurtosis features of cervical cancer (CC) and study the feasibility of diffusion kurtosis imaging (DKI) based on the non-Gaussian diffusion-weighted model to differentiate the stage and grade of CC. ⋯ The pilot study demonstrated that these diffusion and kurtosis indices from DKI based on the non-Gaussian diffusion-weighted model putatively differentiated the grade and stage of CC.
-
Parallel imaging using phased array coils facilitates accelerated magnetic resonance imaging (MRI) and spectroscopy (MRS). Parallel data reconstruction requires the combination of data from individual coil elements, but limited combination algorithms currently exist for higher-order phased arrays and MRS data. Here, we present a systematic framework for identifying coil proximity-related signal inhomogeneities and noise levels in phased array coils that may affect sensitivity of parallel MRS. ⋯ SNR varied significantly as a function of voxel position (F=58.3, p<0.0001) and SNR threshold for all phased arrays (p<0.05 for 64-, 32-, and 20-channel coils). Metabolite CRLBs were dependent on the combination strategy. We demonstrate the importance of the sampling voxel position and coil proximity on overall SNR in parallel MRS data acquisition, with significant SNR improvements after selectively filtering individual spectra based on pre-determined SNR thresholds which must be optimized for each phased array coil element and volume of interest.
-
Adequate evaluation of spinal cord parenchyma and accurate identification of injury range are considered two premises for the research and treatment of chronic spinal cord injury (SCI). Diffusion tensor imaging (DTI) provides information about water diffusion in spinal cord, and thus makes it possible to realize these premises. ⋯ DTI parameters might comprehensively reflect the post-SCI pathological status of spinal cord parenchyma at the epicenter and distal parts during the chronic stage, while showing good consistency with locomotor performance. DTI combined with tractography could intuitively display the distribution of spared fibers after SCI and accurately provide information such as cavity area. This may shed light on the research and treatment of chronic SCI.
-
To image the entire vasculature of the brain with complete suppression of signal from background tissue using a single 3D excitation interleaved rephased/dephased multi-echo gradient echo sequence. This ensures no loss of signal from fast flow and provides co-registered susceptibility weighted images (SWI) and quantitative susceptibility maps (QSM) from the same scan. ⋯ The background tissue can be properly suppressed using the proposed interleaved MRAV sequence. One can obtain whole brain MRAV, MRA, SWI, true-SWI (or tSWI) and QSM data simultaneously from a single scan.