Magnetic resonance imaging
-
Randomized Controlled Trial Multicenter Study
Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning.
Magnetic resonance images with multiple contrasts or sequences are commonly used for segmenting brain tissues, including lesions, in multiple sclerosis (MS). However, acquisition of images with multiple contrasts increases the scan time and complexity of the analysis, possibly introducing factors that could compromise segmentation quality. ⋯ Best performance for segmented tissue volumes was obtained with all four image contrasts as the input, and comparable performance was attainable with FLAIR only as the input, albeit with a moderate increase in FPR for small lesions. This implies that acquisition of only FLAIR images provides satisfactory tissue segmentation. Lesion segmentation was poor for very small lesions and improved rapidly with lesion size.
-
The habenulae consist of a pair of small nuclei which bridge the limbic forebrain and midbrain monoaminergic centers. They are implicated in major depressive disorders due to abnormal phasic response when provoked by a conditioned stimulus. The lateral habenula (Lhb) is believed to be involved in dopamine metabolism and is now a target for deep brain stimulation, a treatment which has shown promising anti-depression effects. ⋯ SWI, QSM, and tSWI showed bilateral signal changes in the posterior location of the habenulae relative to the anterior location, which may indicate increased putative iron content within the Lhb. This signal behavior was shown in 41/44 (93%) subjects. In summary, it is possible to localize the lateral component of the habenula using SWI and QSM at 3 T.
-
Recent advances in J-difference-edited proton magnetic resonance spectroscopy (1H MRS) data acquisition and processing have led to the development of Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy (HERMES) techniques, which enable the simultaneous measurement of ɣ-aminobutyric acid (GABA), the primary inhibitory amino acid neurotransmitter in the central nervous system, and of glutathione (GSH), the most abundant antioxidant in living tissue, at the commonly available magnetic field strength of 3 T. However, the reproducibility of brain levels of GABA and GSH measured across multiple scans in human subjects using HERMES remains to be established. ⋯ The primary findings of study were that, 1) the coefficient of variation (CV) of measuring GABA with HERMES was 16.7%, which is in agreement with the reliability we previously reported for measuring GABA using MEGA-PRESS; and 2) the reliability of measuring GSH with MEGA-PRESS at TE = 120 ms was more than twice as high as that for measuring the antioxidant with HERMES at TE = 80 ms (CV = 7.3% vs. 19.0% respectively). These findings suggest that HERMES and MEGA-PRESS offer similar reliabilities for measuring GABA, while MEGA-PRESS at TE = 120 ms is more reliable for measuring GSH relative to HERMES at TE = 80 ms.
-
One major thrust in radiology today is image standardization with a focus on rapidly acquired quantitative multi-contrast information. This is critical for multi-center trials, for the collection of big data and for the use of artificial intelligence in evaluating the data. Strategically acquired gradient echo (STAGE) imaging is one such method that can provide 8 qualitative and 7 quantitative pieces of information in 5 min or less at 3 T. ⋯ Assessment of the CNR for the enhanced T1W image (T1WE) showed a significantly better contrast between gray matter and white matter than conventional T1W images in both patients with Parkinson's disease and healthy controls. We also present some clinical cases using STAGE imaging in patients with stroke, metastasis, multiple sclerosis and a fetus with ventriculomegaly. Overall, STAGE is a comprehensive protocol that provides the clinician with numerous qualitative and quantitative images.