Statistics in medicine
-
Statistics in medicine · Mar 2005
Comparative StudyThe use of quantile regression in health care research: a case study examining gender differences in the timeliness of thrombolytic therapy.
Investigators are frequently interested in determining patient and system characteristics associated with delays in the provision of essential medical treatment. Investigators have typically used either multiple linear regression or Cox proportional hazards models to assess the impact of patient and system characteristics on the timeliness of medical treatment. A drawback to the use of these two methods is that they allow, at best, a partial exploration of how a distribution of delays in treatment or of waiting times changes with patient characteristics. ⋯ Females were more likely to experience delays in treatment compared to males. Furthermore, gender had a greater impact upon those patients who had the greatest delays in treatment. Investigators who want to determine how a distribution of delays in treatment or of waiting times changes with patient or system characteristics should consider complementing their analyses with the use of quantile regression.