Statistics in medicine
-
Statistics in medicine · Jul 2011
A proportional hazards regression model for the subdistribution with right-censored and left-truncated competing risks data.
With competing risks failure time data, one often needs to assess the covariate effects on the cumulative incidence probabilities. Fine and Gray proposed a proportional hazards regression model to directly model the subdistribution of a competing risk. They developed the estimating procedure for right-censored competing risks data, based on the inverse probability of censoring weighting. ⋯ We have derived the large sample properties of the proposed estimators. To illustrate the application of the new method, we analyze the failure time data for children with acute leukemia. In this example, the failure times for children who had bone marrow transplants were left truncated.
-
Statistics in medicine · Jul 2011
Two-stage instrumental variable methods for estimating the causal odds ratio: analysis of bias.
We present closed-form expressions of asymptotic bias for the causal odds ratio from two estimation approaches of instrumental variable logistic regression: (i) the two-stage predictor substitution (2SPS) method and (ii) the two-stage residual inclusion (2SRI) approach. Under the 2SPS approach, the first stage model yields the predicted value of treatment as a function of an instrument and covariates, and in the second stage model for the outcome, this predicted value replaces the observed value of treatment as a covariate. Under the 2SRI approach, the first stage is the same, but the residual term of the first stage regression is included in the second stage regression, retaining the observed treatment as a covariate. ⋯ The 2SRI logistic regression is asymptotically unbiased when there is no unmeasured confounding, but when there is unmeasured confounding, there is bias and it increases with increasing unmeasured confounding. The closed-form bias results provide guidance for using these IV logistic regression methods. Our simulation results are consistent with our closed-form analytic results under different combinations of parameter settings.