Statistics in medicine
-
Statistics in medicine · Feb 2015
Accounting for uncertainty due to 'last observation carried forward' outcome imputation in a meta-analysis model.
Missing outcome data are a problem commonly observed in randomized control trials that occurs as a result of participants leaving the study before its end. Missing such important information can bias the study estimates of the relative treatment effect and consequently affect the meta-analytic results. Therefore, methods on manipulating data sets with missing participants, with regard to incorporating the missing information in the analysis so as to avoid the loss of power and minimize the bias, are of interest. ⋯ Allowing for uncertainty in the imputation process, precision is decreased depending on the priors used for sensitivity and specificity. Results on the significance of amisulpride versus conventional drugs differ between the standard LOCF approach and our model depending on prior beliefs on the imputation process. Our method can be regarded as a useful sensitivity analysis that can be used in the presence of concerns about the LOCF process.
-
Statistics in medicine · Feb 2015
Bayesian dose-finding designs for combination of molecularly targeted agents assuming partial stochastic ordering.
Molecularly targeted agent (MTA) combination therapy is in the early stages of development. When using a fixed dose of one agent in combinations of MTAs, toxicity and efficacy do not necessarily increase with an increasing dose of the other agent. Thus, in dose-finding trials for combinations of MTAs, interest may lie in identifying the optimal biological dose combinations (OBDCs), defined as the lowest dose combinations (in a certain sense) that are safe and have the highest efficacy level meeting a prespecified target. ⋯ We demonstrate that our proposed method appropriately accounts for the partial ordering constraints, including potential plateaus on the dose-response surfaces, and is computationally efficient. We develop a dose-combination-finding algorithm to identify the OBDCs. We use simulations to compare the proposed designs with an alternative design based on Bayesian isotonic regression transformation and a design based on parametric change-point dose-toxicity and dose-efficacy models and demonstrate desirable operating characteristics of the proposed designs.
-
Statistics in medicine · Feb 2015
Randomization, matching, and propensity scores in the design and analysis of experimental studies with measured baseline covariates.
In many experimental situations, researchers have information on a number of covariates prior to randomization. This information can be used to balance treatment assignment with respect to these covariates as well as in the analysis of the outcome data. In this paper, we investigate the use of propensity scores in both of these roles. ⋯ This procedure is compared with recently proposed methods in terms of resulting covariate balance and estimation efficiency. Properties of the estimators resulting from each procedure are compared with estimates which incorporate the propensity score in the analysis stage. Simulation results show that analytical adjustment for the propensity score yields results on par with those obtained through restricted randomization procedures and can be used in conjunction with such procedures to further improve inferential efficiency.