Journal of the American College of Cardiology
-
J. Am. Coll. Cardiol. · Dec 2013
ReviewUpdated treatment algorithm of pulmonary arterial hypertension.
The demands on a pulmonary arterial hypertension (PAH) treatment algorithm are multiple and in some ways conflicting. The treatment algorithm usually includes different types of recommendations with varying degrees of scientific evidence. In addition, the algorithm is required to be comprehensive but not too complex, informative yet simple and straightforward. ⋯ The current treatment algorithm may be divided into 3 main areas: 1) general measures, supportive therapy, referral strategy, acute vasoreactivity testing and chronic treatment with calcium channel blockers; 2) initial therapy with approved PAH drugs; and 3) clinical response to the initial therapy, combination therapy, balloon atrial septostomy, and lung transplantation. All three sections will be revisited highlighting information newly available in the past 5 years and proposing updates where appropriate. The European Society of Cardiology grades of recommendation and levels of evidence will be adopted to rank the proposed treatments.
-
J. Am. Coll. Cardiol. · Dec 2013
Randomized Controlled Trial Multicenter StudyHigh-dose atorvastatin reduces periodontal inflammation: a novel pleiotropic effect of statins.
The purpose of this study was to test whether high-dose statin treatment would result in a reduction in periodontal inflammation as assessed by (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET)/computed tomography (CT). ⋯ High-dose atorvastatin reduces periodontal inflammation, suggesting a newly recognized effect of statins. Given the concomitant changes observed in periodontal and arterial inflammation, these data raise the possibility that a portion of that beneficial impact of statins on atherosclerosis relate to reductions in extra-arterial inflammation, for example, periodontitis. (Evaluate the Utility of 18FDG-PET as a Tool to Quantify Atherosclerotic Plaque; NCT00703261).
-
J. Am. Coll. Cardiol. · Dec 2013
ReviewRight heart adaptation to pulmonary arterial hypertension: physiology and pathobiology.
Survival in patients with pulmonary arterial hypertension (PAH) is closely related to right ventricular (RV) function. Although pulmonary load is an important determinant of RV systolic function in PAH, there remains a significant variability in RV adaptation to pulmonary hypertension. In this report, the authors discuss the emerging concepts of right heart pathobiology in PAH. More specifically, the discussion focuses on the following questions. 1) How is right heart failure syndrome best defined? 2) What are the underlying molecular mechanisms of the failing right ventricle in PAH? 3) How are RV contractility and function and their prognostic implications best assessed? 4) What is the role of targeted RV therapy? Throughout the report, the authors highlight differences between right and left heart failure and outline key areas of future investigation.
-
Pulmonary hypertension (PH) is a rare disease in newborns, infants, and children that is associated with significant morbidity and mortality. In the majority of pediatric patients, PH is idiopathic or associated with congenital heart disease and rarely is associated with other conditions such as connective tissue or thromboembolic disease. ⋯ The updated Nice classification for PH has been enhanced to include a greater depth of CHD and emphasizes persistent PH of the newborn and developmental lung diseases, such as bronchopulmonary dysplasia and congenital diaphragmatic hernia. The management of pediatric PH remains challenging because treatment decisions continue to depend largely on results from evidence-based adult studies and the clinical experience of pediatric experts.
-
Pulmonary hypertension (PH) is defined by a mean pulmonary artery pressure ≥ 25 mm Hg at rest, measured during right heart catheterization. There is still insufficient evidence to add an exercise criterion to this definition. The term pulmonary arterial hypertension (PAH) describes a subpopulation of patients with PH characterized hemodynamically by the presence of pre-capillary PH including an end-expiratory pulmonary artery wedge pressure (PAWP) ≤ 15 mm Hg and a pulmonary vascular resistance >3 Wood units. ⋯ A normal PAWP does not rule out the presence of HFpEF. Volume or exercise challenge during right heart catheterization may be useful to unmask the presence of left heart disease, but both tools require further evaluation before their use in general practice can be recommended. Early diagnosis of PAH remains difficult, and screening programs in asymptomatic patients are feasible only in high-risk populations, particularly in patients with systemic sclerosis, for whom recent data suggest that a combination of clinical assessment and pulmonary function testing including diffusion capacity for carbon monoxide, biomarkers, and echocardiography has a higher predictive value than echocardiography alone.