Journal of the American College of Cardiology
-
Major discoveries have been obtained within the last decade in the field of hereditary predisposition to pulmonary arterial hypertension (PAH). Among them, the identification of bone morphogenetic protein receptor type 2 (BMPR2) as the major predisposing gene and activin A receptor type II-like kinase-1 (ACVRL1, also known as ALK1) as the major gene when PAH is associated with hereditary hemorrhagic telangiectasia. The mutation detection rate for the known genes is approximately 75% in familial PAH, but the mutation shortfall remains unexplained even after careful molecular investigation of these genes. ⋯ The availability of molecular genetic diagnosis has opened up a new field for patient care, including genetic counseling for a severe disease, taking into account that the major predisposing gene has a highly variable penetrance between families. Molecular information can be drawn from the genomic study of affected tissues in PAH, in particular, pulmonary vascular tissues and cells, to gain insight into the mechanisms leading to the development of the disease. High-throughput genomic techniques, on the basis of next-generation sequencing, now allow the accurate quantification and analysis of ribonucleic acid, species, including micro-ribonucleic acids, and allow for a genome-wide investigation of epigenetic or regulatory mechanisms, which include deoxyribonucleic acid methylation, histone methylation, and acetylation, or transcription factor binding.
-
J. Am. Coll. Cardiol. · Dec 2013
ReviewRight heart adaptation to pulmonary arterial hypertension: physiology and pathobiology.
Survival in patients with pulmonary arterial hypertension (PAH) is closely related to right ventricular (RV) function. Although pulmonary load is an important determinant of RV systolic function in PAH, there remains a significant variability in RV adaptation to pulmonary hypertension. In this report, the authors discuss the emerging concepts of right heart pathobiology in PAH. More specifically, the discussion focuses on the following questions. 1) How is right heart failure syndrome best defined? 2) What are the underlying molecular mechanisms of the failing right ventricle in PAH? 3) How are RV contractility and function and their prognostic implications best assessed? 4) What is the role of targeted RV therapy? Throughout the report, the authors highlight differences between right and left heart failure and outline key areas of future investigation.
-
Chronic obstructive lung disease (COPD) and diffuse parenchymal lung diseases (DPLD), including idiopathic pulmonary fibrosis (IPF) and sarcoidosis, are associated with a high incidence of pulmonary hypertension (PH), which is linked with exercise limitation and a worse prognosis. Patients with combined pulmonary fibrosis and emphysema (CPFE) are particularly prone to the development of PH. Echocardiography and right heart catheterization are the principal modalities for the diagnosis of COPD and DPLD. ⋯ The "severe PH group" includes only a minority of chronic lung disease patients who are suspected of having strong general vascular abnormalities (remodeling) accompanying the parenchymal disease and with evidence of an exhausted circulatory reserve rather than an exhausted ventilatory reserve underlying the limitation of exercise capacity. Exertional dyspnea disproportionate to pulmonary function tests, low carbon monoxide diffusion capacity, and rapid decline of arterial oxygenation upon exercise are typical clinical features of this subgroup with poor prognosis. Studies evaluating the effect of pulmonary arterial hypertension drugs currently not approved for group 3 PH patients should focus on this severe PH group, and for the time being, these patients should be transferred to expert centers for individualized patient care.
-
Pulmonary hypertension (PH) is a rare disease in newborns, infants, and children that is associated with significant morbidity and mortality. In the majority of pediatric patients, PH is idiopathic or associated with congenital heart disease and rarely is associated with other conditions such as connective tissue or thromboembolic disease. ⋯ The updated Nice classification for PH has been enhanced to include a greater depth of CHD and emphasizes persistent PH of the newborn and developmental lung diseases, such as bronchopulmonary dysplasia and congenital diaphragmatic hernia. The management of pediatric PH remains challenging because treatment decisions continue to depend largely on results from evidence-based adult studies and the clinical experience of pediatric experts.