Journal of the American College of Cardiology
-
Pulmonary hypertension (PH), a common complication of left heart diseases (LHD), negatively impacts symptoms, exercise capacity, and outcome. Although the true prevalence of PH-LHD is unknown, a subset of patients might present significant PH that cannot be explained by a passive increase in left-sided filling pressures. The term "out-of-proportion" PH has been used to identify that population without a clear definition, which has been found less than ideal and created confusion. ⋯ We suggest to abandon "out-of-proportion" PH and to distinguish "isolated post-capillary PH" from "post-capillary PH with a pre-capillary component" on the basis of the pressure difference between diastolic pulmonary artery pressure and pulmonary artery wedge pressure. Although there is no validated treatment for PH-LHD, we provide insights into management and discuss completed and randomized trials in this condition. Finally, we provide recommendations for future clinical trials to establish safety and efficacy of novel compounds to target this area of unmet medical need.
-
J. Am. Coll. Cardiol. · Dec 2013
Randomized Controlled Trial Multicenter StudyHigh-dose atorvastatin reduces periodontal inflammation: a novel pleiotropic effect of statins.
The purpose of this study was to test whether high-dose statin treatment would result in a reduction in periodontal inflammation as assessed by (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET)/computed tomography (CT). ⋯ High-dose atorvastatin reduces periodontal inflammation, suggesting a newly recognized effect of statins. Given the concomitant changes observed in periodontal and arterial inflammation, these data raise the possibility that a portion of that beneficial impact of statins on atherosclerosis relate to reductions in extra-arterial inflammation, for example, periodontitis. (Evaluate the Utility of 18FDG-PET as a Tool to Quantify Atherosclerotic Plaque; NCT00703261).
-
J. Am. Coll. Cardiol. · Dec 2013
Comparative StudyComparative electromechanical and hemodynamic effects of left ventricular and biventricular pacing in dyssynchronous heart failure: electrical resynchronization versus left-right ventricular interaction.
The purpose of this study was to enhance understanding of the working mechanism of cardiac resynchronization therapy by comparing animal experimental, clinical, and computational data on the hemodynamic and electromechanical consequences of left ventricular pacing (LVP) and biventricular pacing (BiVP). ⋯ Animal experimental, clinical, and computational data support the similarity of hemodynamic response to LVP and BiVP, despite differences in electrical dyssynchrony. The simulations provide the novel insight that, through ventricular interaction, the RV myocardium importantly contributes to the improvement in LV pump function induced by cardiac resynchronization therapy.