Radiographics : a review publication of the Radiological Society of North America, Inc
-
Human mummies have long been studied by using imaging as a primary investigative method. Mummified animal remains from ancient Egypt are less well researched, yet much can be learned about species diversity and the methods of preservation. Noninvasive imaging methods enable mummy bundles to remain intact, with no detrimental physical effects, thus ensuring protection of a valuable archaeological resource. ⋯ Radiography proved to be an excellent research method that provided initial insight into the contents of the mummy bundle, and CT contributed additional useful detail in some cases. Paleoradiologic analyses enabled information on mummy bundle contents to be proved, including the nature of the skeletal remains and the methods of mummification. An optimum method involving radiography and CT is described.
-
Approximately one-third of all cervical spine injuries involve the craniocervical junction (CCJ). Composed of the occiput and the first two cervical vertebrae, this important anatomic landmark, in conjunction with an intricate ligamentous complex, is essential to maintaining the stability of the cervical spine. The atlantoaxial joint is the most mobile portion of the spine, predominantly relying on the ligamentous framework for stability at that level. ⋯ Thin-section multidetector computed tomography with sagittal and coronal reformats is the study of choice in evaluating the extent of injury, allowing the radiologist to thoroughly evaluate the stability of the cervical spine. Furthermore, magnetic resonance (MR) imaging is increasingly being used to evaluate the spinal soft tissues and ligaments, and to identify associated spinal cord injury, if present. MR imaging is also indicated in patients whose neurologic status cannot be evaluated within 48 hours of injury. .
-
Acute airway obstruction is much more common in infants and children than in adults because of their unique anatomic and physiologic features. Even in young patients with partial airway occlusion, symptoms can be severe and potentially life-threatening. Factors that predispose children to airway compromise include the orientation of their larynx, the narrow caliber of their trachea, and their weak intercostal muscles. ⋯ Radiographs of the chest and upper airway should be routinely acquired; however, for the child who is in severe distress, a single lateral radiographic view may be all that is necessary. The purpose of this article is to provide an imaging approach to acquired causes of acute airway obstruction in children, including (a) abnormalities affecting the upper portion of the airway, such as croup, acute epiglottitis, retropharyngeal infection, and foreign bodies, and (b) abnormalities affecting the lower portion of the airway, such as asthma, bronchiolitis, and foreign bodies. It is essential that the radiologist recognize key imaging findings and understand the pathophysiologic features of acute airway obstruction because in most cases, when the cause is identified, the condition responds well to prompt management.
-
While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. ⋯ It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.
-
In the updated American Thoracic Society-European Respiratory Society classification of the idiopathic interstitial pneumonias (IIPs), the major entities have been preserved and grouped into (a) "chronic fibrosing IIPs" (idiopathic pulmonary fibrosis and idiopathic nonspecific interstitial pneumonia), (b) "smoking-related IIPs" (respiratory bronchiolitis-associated interstitial lung disease and desquamative interstitial pneumonia), (c) "acute or subacute IIPs" (cryptogenic organizing pneumonia and acute interstitial pneumonia), and (d) "rare IIPs" (lymphoid interstitial pneumonia and idiopathic pleuroparenchymal fibroelastosis). Furthermore, it has been acknowledged that a final diagnosis is not always achievable, and the category "unclassifiable IIP" has been proposed. The diagnostic interpretation of the IIPs is often challenging because other diseases with a known etiology (most notably, connective tissue disease and hypersensitivity pneumonitis) may show similar morphologic patterns. ⋯ Optimal CT quality and a systematic approach are both pivotal for evaluation of IIP. Interobserver variation for the various patterns encountered in the IIPs is an issue. It is important for radiologists to understand the longitudinal behavior of IIPs at serial CT examinations, especially for providing a framework for cases that are unclassifiable or in which a histologic diagnosis cannot be obtained.