Hepatology : official journal of the American Association for the Study of Liver Diseases
-
The Extension for Community Healthcare Outcomes (ECHO) Model was developed by the University of New Mexico Health Sciences Center as a platform to deliver complex specialty medical care to underserved populations through an innovative educational model of team-based interdisciplinary development. Using state-of-the-art telehealth technology, best practice protocols, and case-based learning, ECHO trains and supports primary care providers to develop knowledge and self-efficacy on a variety of diseases. As a result, they can deliver best practice care for complex health conditions in communities where specialty care is unavailable. ⋯ The initial survey data show a significant improvement in provider knowledge, self-efficacy, and professional satisfaction through participation in ECHO HCV clinics. Clinicians reported a moderate to major benefit from participation. We conclude that ECHO expands access to best practice care for underserved populations, builds communities of practice to enhance professional development and satisfaction of primary care clinicians, and expands sustainable capacity for care by building local centers of excellence.
-
The cannabinoid receptor 2 (CB2) plays a pleiotropic role in innate immunity and is a crucial mediator of liver disease. In this study, we investigated the impact of CB2 receptors on the regenerative process associated with liver injury. Following acute hepatitis induced by carbon tetrachloride (CCl(4)), CB2 was induced in the nonparenchymal cell fraction and remained undetectable in hepatocytes. Administration of CCl(4) to CB2(-/-) mice accelerated liver injury, as shown by increased alanine/aspartate aminotransferase levels and hepatocyte apoptosis, and delayed liver regeneration, as reflected by a retarded induction of hepatocyte proliferating cell nuclear antigen expression; proliferating cell nuclear antigen induction was also delayed in CB2(-/-) mice undergoing partial hepatectomy. Conversely, following treatment with the CB2 agonist JWH-133, CCl(4)-treated WT mice displayed reduced liver injury and accelerated liver regeneration. The CCl(4)-treated CB2(-/-) mice showed a decrease in inducible nitric oxide synthase and tumor necrosis factor-alpha expression, and administration of the nitric oxide donor moldomine (SIN-1) to these animals reduced hepatocyte apoptosis, without affecting liver regeneration. Impaired liver regeneration was consecutive to an interleukin-6 (IL-6)-mediated decrease in matrix metalloproteinase 2 (MMP-2) activity. Indeed, CCl(4)-treated CB2(-/-) mice displayed lower levels of hepatic IL-6 messenger RNA and increased MMP-2 activity. Administration of IL-6 to these mice decreased MMP-2 activity and improved liver regeneration, without affecting hepatocyte apoptosis. Accordingly, administration of the MMP inhibitor CTTHWGFTLC to CCl(4)-treated CB2(-/-) mice improved liver regeneration. Finally, in vitro studies demonstrated that incubation of hepatic myofibroblasts with JWH-133 increased tumor necrosis factor-alpha and IL-6 and decreased MMP-2 expressions. ⋯ CB2 receptors reduce liver injury and promote liver regeneration following acute insult, via distinct paracrine mechanisms involving hepatic myofibroblasts. These results suggest that CB2 agonists display potent hepatoprotective properties, in addition to their antifibrogenic effects.