Hepatology : official journal of the American Association for the Study of Liver Diseases
-
Hyperbilirubinemia is common during critical illness and is associated with adverse outcome. Whether hyperbilirubinemia reflects intensive care unit (ICU) cholestasis is unclear. Therefore, the aim of this study was to analyze hyperbilirubinemia in conjunction with serum bile acids (BAs) and the key steps in BA synthesis, transport, and regulation by nuclear receptors (NRs). Serum BA and bilirubin levels were determined in 130 ICU and 20 control patients. In liver biopsies messenger RNA (mRNA) expression of BA synthesis enzymes, BA transporters, and NRs was assessed. In a subset (40 ICU / 10 controls) immunohistochemical staining of the transporters and receptors together with a histological evaluation of cholestasis was performed. BA levels were much more elevated than bilirubin in ICU patients. Conjugated cholic acid (CA) and chenodeoxycholic acid (CDCA) were elevated, with an increased CA/CDCA ratio. Unconjugated BA did not differ between controls and patients. Despite elevated serum BA levels, CYP7A1 protein, the rate-limiting enzyme in BA synthesis, was not lowered in ICU patients. Also, protein expression of the apical bile salt export pump (BSEP) was decreased, whereas multidrug resistance-associated protein (MRP) 3 was strongly increased at the basolateral side. This reversal of BA transport toward the sinusoidal blood compartment is in line with the increased serum conjugated BA levels. Immunostaining showed marked down-regulation of nuclear farnesoid X receptor, retinoid X receptor alpha, constitutive androstane receptor, and pregnane X receptor nuclear protein levels. ⋯ Failure to inhibit BA synthesis, up-regulate canalicular BA export, and localize pivotal NR in the hepatocytic nuclei may indicate dysfunctional feedback regulation by increased BA levels. Alternatively, critical illness may result in maintained BA synthesis (CYP7A1), reversal of normal BA transport (BSEP/MRP3), and inhibition of the BA sensor (FXR/RXRα) to increase serum BA levels.
-
Cytochrome P450 2E1 (CYP2E1) induction and tumor necrosis factor alpha (TNF-α) production are key risk factors in alcoholic liver injury. Increased oxidative stress from CYP2E1 induction by pyrazole in vivo sensitizes the liver to TNF-α-induced hepatotoxicity by a mechanism involving the activation of c-jun N-terminal kinase (JNK) and mitochondrial damage. The aim of this study was to evaluate whether JNK1 or JNK2 plays a role in this potentiated hepatotoxicity. Wild-type (WT), jnk1(-/-) , and jnk2(-/-) mice were used to identify changes of hepatotoxicity, damage to mitochondria, and production of oxidative stress after pyrazole plus TNF-α treatment. Increased serum alanine aminotransferase, inflammatory infiltration, and central necrosis were observed in the jnk2(-/-) and WT mice treated with pyrazole plus TNF-α, but not in the jnk1(-/-) mice. Pyrazole elevated the activity and protein level of CYP2E1 in all mice. There was a significant increase of malondialdehyde, 4-hydroxynonenal adducts, 3-nitrotyrosine, and inducible nitric oxide synthase in the jnk2(-/-) and WT mice, compared to the jnk1(-/-) mice, upon pyrazole plus TNF-α treatment, or compared to mice treated with either pyrazole alone or TNF-α alone. The antioxidants, catalase, phospholipid hydroperoxide glutathione peroxidase, thioredoxin, and glutathione were lowered, and cytochrome c was released from the mitochondria in the jnk2(-/-) and WT mice. Mitochondrial production of superoxide was increased in the jnk2(-/-) and WT mice, compared to the jnk1(-/-) mice, upon pyrazole plus TNF-α treatment. Electron microscopy showed altered mitochondrial structure in the jnk2(-/-) and WT mice, but not the jnk1(-/-) mice. ⋯ JNK1 plays a role in the hepatotoxicity, mitochondrial dysfunction, and oxidative stress mediated by pyrazole plus TNF-α treatment. These findings raise the question as to the potential mechanisms of JNK1 activation related to alcoholic liver injury.