Hepatology : official journal of the American Association for the Study of Liver Diseases
-
Substantial reductions in hepatitis C virus (HCV) prevalence among people who inject drugs (PWID) cannot be achieved by harm reduction interventions such as needle exchange and opiate substitution therapy (OST) alone. Current HCV treatment is arduous and uptake is low, but new highly effective and tolerable interferon-free direct-acting antiviral (DAA) treatments could facilitate increased uptake. We projected the potential impact of DAA treatments on PWID HCV prevalence in three settings. A dynamic HCV transmission model was parameterized to three chronic HCV prevalence settings: Edinburgh, UK (25%); Melbourne, Australia (50%); and Vancouver, Canada (65%). Using realistic scenarios of future DAAs (90% sustained viral response, 12 weeks duration, available 2015), we projected the treatment rates required to reduce chronic HCV prevalence by half or three-quarters within 15 years. Current HCV treatment rates may have a minimal impact on prevalence in Melbourne and Vancouver (<2% relative reductions) but could reduce prevalence by 26% in 15 years in Edinburgh. Prevalence could halve within 15 years with treatment scale-up to 15, 40, or 76 per 1,000 PWID annually in Edinburgh, Melbourne, or Vancouver, respectively (2-, 13-, and 15-fold increases, respectively). Scale-up to 22, 54, or 98 per 1,000 PWID annually could reduce prevalence by three-quarters within 15 years. Less impact occurs with delayed scale-up, higher baseline prevalence, or shorter average injecting duration. Results are insensitive to risk heterogeneity or restricting treatment to PWID on OST. At existing HCV drug costs, halving chronic prevalence would require annual treatment budgets of US $3.2 million in Edinburgh and approximately $50 million in Melbourne and Vancouver. ⋯ Interferon-free DAAs could enable increased HCV treatment uptake among PWID, which could have a major preventative impact. However, treatment costs may limit scale-up, and should be addressed.
-
Review
Albumin: pathophysiologic basis of its role in the treatment of cirrhosis and its complications.
Since the introduction of human serum albumin as a plasma expander in the 1940s, considerable research has allowed a better understanding of its biochemical properties and potential clinical benefits. Albumin has a complex structure, which is responsible for a variety of biological functions. In disease, the albumin molecule is susceptible to modifications that may alter its biological activity. ⋯ In combination with vasoconstrictors, albumin is useful in the management of patients with hepatorenal syndrome. Its role is being investigated in a large number of indications, which rely on its volume and nonvolume expansion functions such as stroke, severe sepsis, Alzheimer's disease, malaria, burns, and ovarian hyperstimulation syndrome. This review explores the above concepts, reviews the available evidence for the use of albumin in liver diseases, defines therapeutic limitations, and explores the challenges that should be addressed in future research.
-
Ischemia and reperfusion-elicited tissue injury contributes to morbidity and mortality of hepatic surgery and during liver transplantation. Previous studies implicated extracellular adenosine signaling in liver protection. Based on the notion that extracellular adenosine signaling is terminated by uptake from the extracellular towards the intracellular compartment by way of equilibrative nucleoside transporters (ENTs), we hypothesized a functional role of ENTs in liver protection from ischemia. During orthotopic liver transplantation in humans, we observed higher expressional levels of ENT1 than ENT2, in conjunction with repression of ENT1 and ENT2 transcript and protein levels following warm ischemia and reperfusion. Treatment with the pharmacologic ENT inhibitor dipyridamole revealed elevations of hepatic adenosine levels and robust liver protection in a murine model of liver ischemia and reperfusion. Studies in gene-targeted mice for Ent1 or Ent2 demonstrated selective protection from liver injury in Ent1(-/-) mice. Treatment with selective adenosine receptor antagonists indicated a contribution of Adora2b receptor signaling in ENT-dependent liver protection. ⋯ These findings implicate ENT1 in liver protection from ischemia and reperfusion injury and suggest ENT inhibitors may be of benefit in the prevention or treatment of ischemic liver injury.