Nutrition research
-
Review Meta Analysis
Probiotics for weight loss: a systematic review and meta-analysis.
The intestinal microbiota has been reported to be one of the potential determinants of obesity in recent human and animal studies. Probiotics may affect the gut microbiota to modulate obesity. This systematic review aims to summarize and critically evaluate the evidence from clinical trials that have tested the effectiveness of probiotics or foods containing probiotics as a treatment for weight loss. ⋯ However, the total number of RCTs included in the analysis, the total sample size, and the methodological quality of the primary studies were too low to draw definitive conclusions. Thus, more rigorously designed RCTs are necessary to examine the effect of probiotics on body weight in greater detail. Collectively, the RCTs examined in this meta-analysis indicated that probiotics have limited efficacy in terms of decreasing body weight and BMI and were not effective for weight loss.
-
Previous research demonstrated that resveratrol possesses promising properties for preventing obesity. Endoplasmic reticulum (ER) stress was proposed to be involved in the pathophysiology of both obesity and hepatic steatosis. In the current study, we hypothesized that resveratrol could protect against high-fat diet (HFD)-induced hepatic steatosis and ER stress and regulate the expression of genes related to hepatic steatosis. ⋯ Resveratrol also decreased PKR-like ER kinase phosphorylation, although it was not affected by the HFD. Furthermore, resveratrol increased the expression of peroxisome proliferator-activated receptor δ, while decreasing the expression of ATP citrate lyase, suppressor of cytokine signaling-3, and interleukin-1β. Our data suggest that resveratrol can prevent hepatic ER stress and regulate the expression of peroxisome proliferator-activated receptor δ, ATP citrate lyase, suppressor of cytokine signaling-3, tumor necrosis factor α, and interleukin-1β in diet-induced obese rats, and these effects likely contribute to resveratrol's protective function against excessive accumulation of fat in the liver.
-
Renal dysfunction is a severe complication that is caused by diabetes mellitus. Many factors associate the progression of this complication with high levels of proinflammatory and pro-oxidant substances, such as advanced glycation end products (AGEs), which form a heterogeneous group of compounds that can accumulate in tissues such as retinas, joints, and kidneys. The hypothesis of this study is that n-3 polyunsaturated fatty acids (n-3 PUFAs) have a nephroprotective effect on rats after exposing them to a combination of 2 protocols that increase the AGE amounts: a high-fat diet enriched with AGEs and a diabetes rat model. ⋯ Diabetes mellitus was induced by an intraperitoneal injection of alloxan (150 mg kg(-1)). In diabetic and nondiabetic rats, the high HAGE fat-containing diet increased the serum creatinine, tumor necrosis factor-α, thiobarbituric acid reactive substances, and reactive oxygen species levels, as well as the superoxide dismutase/catalase + glutathione peroxidase ratio and the superoxide dismutase 2 and receptor for advanced glycation end products immunocontent of the kidneys. n-3 Polyunsaturated fatty acids attenuated these alterations and influenced the receptor for advanced glycation end products/oxidative stress/tumor necrosis factor-α axis. In summary, this study showed that the extrinsic AGE pathway (HAGE diet) had a greater effect on renal metabolism than the intrinsic AGE pathway (diabetes induction) and that n-3 PUFAs appear to prevent renal dysfunction via antioxidant and anti-inflammatory pathways.
-
The incidence of diabetes has increased rapidly across the entire world in the last 2 decades. Accumulating evidence suggests that gut microbiota contribute to the pathogenesis of diabetes. Several studies have demonstrated that patients with diabetes are characterized by a moderate degree of gut microbial dysbiosis. ⋯ The compositional changes in the gut microbiota in type 2 and type 1 diabetes are also discussed. Moreover, we introduce the new findings of fecal transplantation, and use of probiotics and prebiotics as new treatment strategies for diabetes. Future research should be focused on defining the primary species of the gut microbiota and their exact roles in diabetes, potentially increasing the possibility of fecal transplants as a therapeutic strategy for diabetes.
-
Obesity has been reported to impair immune functions and lead to low-grade long-term inflammation; however, studies that have investigated the impact of weight loss on these among the young and slightly obese are limited. Thus, we investigated the effect of a 12-week weight management program with behavioral modifications on cell-mediated immune functions and inflammatory responses in young obese participants. Our hypothesis was that weight loss would result in improved immune functions and decreased inflammatory responses. ⋯ In the obese group, increase in phytohemagglutinin-stimulated interleukin-10 production, a TH2 and anti-inflammatory cytokine, approached significance after program participation (from 6181 ± 475 to 6970 ± 632 pg/mL, P = .06). No significant changes in proliferative responses to the optimal concentration of concanavalin A or phytohemagglutinin were observed in the obese after program participation. Collectively, modest weight loss did not change the cell-mediated immune functions significantly but did attenuate the inflammatory response in young and otherwise healthy obese adults.