Nutrition research
-
Randomized Controlled Trial
The addition of peanuts to habitual diets is associated with lower consumption of savory non-core snacks by men and sweet non-core snacks by women.
Snacking is associated with intakes of non-core foods which may predispose to obesity. Peanuts have potential satiety benefits and may assist with weight management; we hypothesized that peanut consumption would reduce intake of non-core snack foods due to compensation. We investigated the effects of adding peanuts to a habitual diet on snacking habits and energy intake. ⋯ Servings of other snack foods did not change during the peanut phase (P=.6) compared with control. However, sex-specific analysis revealed that men and women consumed less savory (P<.001) and sweet (P=.01) non-core snacks, respectively, during the peanut phase. Despite increased energy intake and snacking frequency, peanuts may improve the diet through sex-specific reductions of non-core foods; for optimal energy balance, peanuts should be substituted rather than added to the diet.
-
Randomized Controlled Trial
Single-dose oral guanidinoacetic acid exhibits dose-dependent pharmacokinetics in healthy volunteers.
Guanidinoacetic acid (GAA), the natural precursor of creatine, has potential as a dietary supplement for human nutrition, yet no data are available regarding its dose-dependent pharmacokinetic (PK) behavior. We hypothesized that a single dose of orally administered GAA exhibited dose-dependent PK behavior in healthy volunteers. Forty-eight young adults were enrolled in a randomized, placebo-controlled, double-blind, parallel-group trial to receive single oral doses of GAA (1.2, 2.4, and 4.8 g) or a placebo. ⋯ Ingestion of GAA elevated plasma creatine by 80%, 116%, and 293% compared with the placebo for the 1.2, 2.4, and 4.8 g doses, respectively (P < .0001). Guanidinoacetic acid single-dose PK metrics were nonlinear with respect to dose size. Across the dose range of 1.2 to 4.8 g, systemic exposure to GAA increased in a greater than dose-proportional manner.
-
Randomized Controlled Trial
Cinnamon may have therapeutic benefits on lipid profile, liver enzymes, insulin resistance, and high-sensitivity C-reactive protein in nonalcoholic fatty liver disease patients.
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent cause of hepatic injury in the world. One of the most important therapeutic strategies for this disease is modulating insulin resistance and oxidative stress. In this study, we investigated the hypothesis that supplementation with cinnamon exerts an insulin sensitizer effect in patients with NAFLD. ⋯ In the treatment group (P < .05), significant decreases in HOMA (Homeostatic Model Assessment) index, FBS (fasting blood glucose), total cholesterol, triglyceride, ALT (alanine aminotransferase), AST (aspartate aminotransferase), GGT (gamma glutamine transpeptidase), and high-sensitivity C-reactive protein were seen, but there was no significant change in serum high-density lipoproteins levels (P = .122). In both groups, low-density lipoproteins decreased significantly (P < .05). In conclusion, the study suggests that taking 1500 mg cinnamon daily may be effective in improving NAFLD characteristics.
-
Randomized Controlled Trial
Choline supplementation in children with fetal alcohol spectrum disorders has high feasibility and tolerability.
There are no biological treatments for fetal alcohol spectrum disorders (FASDs), lifelong conditions associated with physical anomalies, brain damage, and neurocognitive abnormalities. In preclinical studies, choline partially ameliorates memory and learning deficits from prenatal alcohol exposure. This phase I pilot study evaluated the feasibility, tolerability, and potential adverse effects of choline supplementation in children with FASD. ⋯ There were no serious adverse events to research participants. This phase I pilot study demonstrates that choline supplementation at 500 mg/d for 9 months in children aged 2 to 5 years is feasible and has high tolerability. Further examination of the efficacy of choline supplementation in FASD is currently underway.
-
Randomized Controlled Trial
Regional, but not total, body composition changes in overweight and obese adults consuming a higher protein, energy-restricted diet are sex specific.
Secondary analyses of data from 2 studies were used to assess the effects of protein intake and sex on diet-induced changes in body composition. The primary hypothesis was that the changes of body composition via energy restriction (ie, lean body mass [LBM], fat mass [FM], and bone) would be sex and diet specific. For 12 weeks, 43 male (study 1) and 45 female (study 2) overweight and obese adults consumed an energy-deficit diet (750 kcal/d less than energy needs) containing either 0.8 (normal protein [NP], 21 men and 23 women) or 1.4 g protein∙kg(-1)∙d(-1) (high protein [HP], 22 men and 22 women). ⋯ Protein intake did not influence these sex-specific responses or have any independent effects on changes in FM. In addition, protein intake did not influence bone mineral density responses over time; bone mineral density was reduced in women, but not in men. These findings indicate that higher protein intake during weight loss promotes the retention of LBM in both the trunk and legs despite the sex-specific changes in these body regions.