The Science of the total environment
-
Wetlands have been identified as important sites of mercury methylation in catchments, but the range of wetland types and their geographic distribution for which methylmercury fluxes are reported in the literature are limited. Linkages among wetland hydrology, total mercury and methylmercury concentrations and fluxes, and other water quality parameters were assessed in a temperate forested swamp in Southern Ontario, Canada. Two hydrogeomorphically distinct stream reaches within the wetland exhibited differences in wetland-stream hydrologic connectivity, which strongly influenced mercury dynamics. ⋯ Both total mercury and methylmercury concentrations were related to dissolved and particulate organic carbon in stream waters, but these relationships were dependent upon the sampling location and flow conditions. Throughout the wetland, methylmercury concentrations exhibited temporal relationships with sulfate concentrations. Further, despite short surface water residence times, periods of wetland and stream disconnect and high pH (approx. 8) in surface water, methylmercury fluxes from this wetland to the downstream were similar to those from more stagnant and acidic wetlands.
-
Sci. Total Environ. · Jun 2004
Influence of methylmercury from tributary streams on mercury levels in Savannah River Asiatic clams.
Average methylmercury levels in five Savannah River tributary streams, sampled 11 times over 2 years (0.170 ng/l), were nearly twice as high as in the Savannah River (0.085 ng/l). Total mercury levels in the tributaries (2.98 ng/l) did not differ significantly from the river (2.59 ng/l). ⋯ Mercury concentrations in Asiatic clams (Corbicula fluminea) collected from the discharge plumes of Savannah River tributaries (average of 0.044 microg/g wet weight) were significantly (P<0.001) higher than in Asiatic clams collected from the Savannah River upstream from the tributary mouths (average of 0.017 microg/g wet weight). These results indicate that streams draining wetlands into coastal plain rivers can create localized areas of elevated methylmercury with resulting increases in the mercury levels of river biota.