The Science of the total environment
-
Sci. Total Environ. · Mar 2015
ReviewSpecial issue on mercury in Canada's North: summary and recommendations for future research.
Important scientific advances have been made over the last decade in identifying the environmental fate of mercury and the processes that control its cycling in the Canadian Arctic. This special issue includes a series of six detailed reviews that summarize the main findings of a scientific assessment undertaken by the Government of Canada's Northern Contaminants Program. It was the first assessment to focus exclusively on mercury pollution in the Canadian Arctic. ⋯ While these accomplishments are significant, the complex nature of the mercury cycle continues to provide challenges in characterizing and quantifying the relationships of mercury sources and transport processes with mercury levels in biota and biological effects of mercury exposure. Of particular concern are large uncertainties in our understanding of the processes that are contributing to increasing mercury concentrations in some Arctic fish and wildlife. Specific recommendations are provided for future research and monitoring of the environmental impacts of anthropogenic mercury emissions, influences of climate change, and the effectiveness of mitigation strategies for mercury in the Canadian Arctic.
-
Sci. Total Environ. · Mar 2015
ReviewRecent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic.
This review summarizes our current state of knowledge regarding the potential biological effects of mercury (Hg) exposure on fish and wildlife in the Canadian Arctic. Although Hg in most freshwater fish from northern Canada was not sufficiently elevated to be of concern, a few lakes in the Northwest Territories and Nunavut contained fish of certain species (e.g. northern pike, Arctic char) whose muscle Hg concentrations exceeded an estimated threshold range (0.5-1.0 μg g(-1) wet weight) within which adverse biological effects begin to occur. Marine fish species generally had substantially lower Hg concentrations than freshwater fish; but the Greenland shark, a long-lived predatory species, had mean muscle Hg concentrations exceeding the threshold range for possible effects on health or reproduction. ⋯ Harbour seals from western Hudson Bay had elevated mean liver Hg concentrations along with comparatively high muscle Hg concentrations indicating potential health effects from methylmercury (MeHg) exposure on this subpopulation. Because current information is generally insufficient to determine with confidence whether Hg exposure is impacting the health of specific fish or wildlife populations in the Canadian Arctic, biological effects studies should comprise a major focus of future Hg research in the Canadian Arctic. Additionally, studies on cellular interactions between Hg and selenium (Se) are required to better account for potential protective effects of Se on Hg toxicity, especially in large predatory Arctic fish, birds, and mammals.