The Science of the total environment
-
Sci. Total Environ. · May 2020
Systems thinking on the resource nexus: Modeling and visualisation tools to identify critical interlinkages for resilient and sustainable societies and institutions.
Achieving the UN Sustainable Development Goals depends on using resources efficiently, avoiding fragmentation in decision-making, recognising the trade-offs and synergies across sectors and adopting an integrated Nexus thinking among policymakers. Nexus Informatics develops the science of recognising and quantifying nexus interlinkages. Nexus-coherent solutions enhance the effect of policymaking in achieving adequate governance, leading to successful strategic vision and efficient resource management. ⋯ It demonstrates that fossil fuel power generation and use of oil for transportation are responsible for the most GHG emissions in most RBDs and presents projections for years 2030 and 2050. The analysis showcases that to move from a general nexus thinking to an operational nexus concept, it is important to focus on data availability and scale. Advanced Sankey and Chord diagrams are introduced to show distribution of resource use among RBDs and an innovative visualisation tool is developed, the Nexus Directional Chord plot, which reveals Nexus hotspots and strong interlinkages among sectors, facilitating stakeholder awareness.
-
Sci. Total Environ. · May 2020
First predatory journals, now conferences: The need to establish lists of fake conferences.
Science of the Total Environment recently discussed how open access and predatory journals affect the flow of scientific knowledge in an unfortunate way. Now, South Korea's Ministry of Education is intervening to establish a system that will help its researchers avoid the growing global number of fake conferences of low academic and scientific merit. Here, we discuss solutions to this problem with respect to what is needed. Particularly, a list similar to that of Beall's for predatory conferences, without restricting researchers' academic freedom.
-
Sci. Total Environ. · May 2020
Ambient fine particulate matter and hospital admissions for ischemic and hemorrhagic strokes and transient ischemic attack in 248 Chinese cities.
Few studies have investigated the acute effects of fine particulate matter (PM2.5) on the risk of stroke subtypes and transient ischemic attack (TIA) in low- and middle-income countries. The primary aim of this study was to assess the associations between short-term exposure to PM2.5 and daily hospital admissions for total cerebrovascular disease, ischemic and hemorrhagic strokes, and TIA in China. A total of 8,359,162 hospital admissions in 248 Chinese cities from 2013 to 2017 were identified from the Hospital Quality Monitoring System of China. ⋯ For ischemic stroke, the effect estimates were significantly larger in people aged 65-74 years, in cool season, and in cities with lower annual average PM2.5 concentrations. The exposure-response curves were nonlinear with a leveling off at high concentrations. These results contribute to the relatively limited literature on the PM2.5-related risks of cerebrovascular events in low- and middle-income countries.
-
Sci. Total Environ. · May 2020
Cross-reactivity between the Betulaceae family and fallout in the real atmospheric aeroallergen load.
Betulaceae family is a dominant tree pollen type in the atmosphere at Northwest Spain, being a major cause of allergenic rhinitis or asthma symptoms. Alnus pollen cause symptoms in the 9-20% of the total hay fever sufferers mean while the 41.89% of patients present a positive skin-prick-test for Betula allergens. Aln g1 and Bet v1 aeroallergens belong to PR-10 protein family and are associated to cross-reactivity processes. ⋯ The main consequence of the successive bloom of both trees would be the so-called "priming effect". Urban population sensitized to Betula pollen could suffer allergic symptoms during winter (as a consequence of Alnus), and in spring with the manifestation of higher symptoms under low birch pollen grain levels in the atmosphere. The traditional information to prevent allergies, such as the airborne pollen concentrations, should be combined with the data of aeroallergen to identify the real allergenic load in the atmosphere.