The Science of the total environment
-
Sci. Total Environ. · Jun 2021
Correlation of SARS-CoV-2 RNA in wastewater with COVID-19 disease burden in sewersheds.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease (COVID-19), is shed in feces and the viral ribonucleic acid (RNA) is detectable in wastewater. A nine-week wastewater epidemiology study of ten wastewater facilities, serving 39% of the state of Utah or 1.26 M individuals was conducted in April and May of 2020. COVID-19 cases were tabulated from within each sewershed boundary. ⋯ SARS-CoV-2 RNA followed a first order decay rate in wastewater, while 90% of the RNA was present in the liquid phase of the influent. Infiltration and inflow, virus decay and sewershed characteristics should be considered during correlation analysis of SAR-CoV-2 with COVID-19 cases. These results provide evidence of the utility of wastewater epidemiology to assist in public health responses to COVID-19.
-
Sci. Total Environ. · Jun 2021
ReviewImpacts of COVID-19 pandemic on the wastewater pathway into surface water: A review.
With global number of cases 106 million and death toll surpassing 2.3 million as of mid-February 2021, the COVID-19 pandemic is certainly one of the major threats that humankind have faced in modern history. As the scientific community navigates through the overwhelming avalanche of information on the multiple health impacts caused by the pandemic, new reports start to emerge on significant ancillary effects associated with the treatment of the virus. Besides the evident health impacts, other emerging impacts related to the COVID-19 pandemic, such as water-related impacts, merits in-depth investigation. ⋯ This paper has critically reviewed currently available knowledge on the most significant potential impacts of the COVID-19 pandemic on the wastewater pathway into surface water, as well as technologies that may serve to counteract the major threats posed, key perspectives and challenges. Additionally, current knowledge gaps and potential directions for further research and development are identified. While the COVID-19 pandemic is an ongoing and rapidly evolving situation, compiling current knowledge of potential links between wastewater and surface water pathways as related to environmental impacts and relevant associated technologies, as presented in this review, is a critical step to guide future research in this area.
-
Sci. Total Environ. · Jun 2021
ReviewWhy airborne transmission hasn't been conclusive in case of COVID-19? An atmospheric science perspective.
Airborne transmission is one of the routes for the spread of COVID-19 which is caused by inhalation of smaller droplets1 containing SARS-CoV-2 (i.e., either virus-laden particulate matter: PM and/or droplet nuclei) in an indoor environment. Notably, a significant fraction of the small droplets, along with respiratory droplets, is produced by both symptomatic and asymptomatic individuals during expiratory events such as breathing, sneezing, coughing and speaking. When these small droplets are exposed to the ambient environment, they may interact with PM and may remain suspended in the atmosphere even for several hours. ⋯ For example, these small droplets containing SARS-CoV-2 might also physically combine with or attach to pre-existing PM so that their behaviour and fate may be governed by PM composition. Thus, the measurement of their infectivity and viability is highly uncertain due to a lack of robust sampling system to separately collect virions in the atmosphere. We believe that the present review will help to minimize the gap in our understanding of the current pandemic and develop a robust epidemiological method for mortality assessment.
-
Sci. Total Environ. · Jun 2021
Impact of climate and population changes on the increasing exposure to summertime compound hot extremes.
Attributing the changes in the population exposure to global compound hot extremes, which combine daytime-nighttime hot extremes with more severe impacts, is essential for climate change adaptation. Based on daily temperature data from the Coupled Model Intercomparison Project phase 6 (CMIP6) and population data, we estimate the changes in population exposure for two future periods under three scenarios of emission and socio-economic development at global and continental scales, and assess the contributions from climate and population changes. We find that the spatial patterns of exposure to compound hot extremes are similar for different periods and scenarios, and regions with high exposure are mainly located over East Asia, South Asia, Europe, and parts of eastern USA and Africa. ⋯ Early (SSP1-2.6) and no (SSP5-8.5) actions of mitigation would relieve and aggravate the increase rate, respectively. For about 78%-87% of the global land areas, the changes in exposure are mainly caused by climate change (accounting for >69%), followed by the interaction effect (accounting for ~29%) that refers to synergistic changes in climate and population. In parts of mid- to high-latitude regions, the exposure is smaller than expected due to opposite effects of climate change and population change.