Investigational new drugs
-
Investigational new drugs · Apr 2021
Epidermal growth factor-like domain multiple 6 (EGFL6) promotes the migration and invasion of gastric cancer cells by inducing epithelial-mesenchymal transition.
Epidermal growth factor-like domain multiple 6 (EGFL6) is implicated in tumor growth, metastasis and angiogenesis, and its ectopic alteration has been detected in aggressive malignancies. However, the pathophysiologic roles and molecular mechanisms of EGFL6 in gastric cancer (GC) remain to be elucidated. In this study, we investigated EGFL6 expression in GC cell lines and tissues using western blotting and immunohistochemistry. ⋯ In addition, we identified the possible molecular mechanisms of EGFL6-involved epithelial-mesenchymal transition (EMT). EGFL6 regulated EMT process and induced metastasis partly through FAK/PI3K/AKT/mTOR, Notch and MAPK signaling pathways. In conclusion, EGFL6 confers an oncogenic function in GC progression and may be proposed as a potential therapeutic target for GC.
-
Investigational new drugs · Aug 2020
Randomized Controlled TrialA phase I study of enfortumab vedotin in Japanese patients with locally advanced or metastatic urothelial carcinoma.
Locally advanced or metastatic urothelial cancer is an aggressive form of cancer with high recurrence rates and low survival. Nectin-4 is a cell adhesion molecule commonly expressed in several tumors, including high expression in urothelial cancer. Enfortumab vedotin is an antibody-drug conjugate composed of an anti-Nectin-4 humanized monoclonal antibody linked to the microtubule disrupting agent, monomethyl auristatin E. ⋯ One patient achieved a confirmed complete response (Arm A) and five achieved confirmed partial responses (n = 3, Arm A; n = 2, Arm B). Objective response and disease control rates were 35.3% and 76.5%, respectively. In Japanese patients with locally advanced/metastatic urothelial cancer, enfortumab vedotin is well tolerated with preliminary antitumor activity and a pharmacokinetic profile consistent with prior reports.
-
Investigational new drugs · Jun 2020
Evaluation of absorption, distribution, metabolism, and excretion of [14C]-rucaparib, a poly(ADP-ribose) polymerase inhibitor, in patients with advanced solid tumors.
Rucaparib, a poly(ADP-ribose) polymerase inhibitor, is licensed for use in recurrent ovarian, fallopian tube, or primary peritoneal cancer. We characterized the absorption, distribution, metabolism, and elimination of rucaparib in 6 patients with advanced solid tumors following a single oral dose of [14C]-rucaparib 600 mg (≈140 μCi). Total radioactivity (TRA) in blood, plasma, urine, and feces was measured using liquid scintillation counting. ⋯ Rucaparib and M324 were the major rucaparib-related components (each ≈7.6% of dose) in urine, whereas rucaparib was the predominant component (63.9% of dose) in feces. The high fecal recovery of unchanged rucaparib could be attributed to hepatic excretion and/or incomplete oral absorption. Overall, these data suggest that rucaparib is eliminated through multiple pathways, including metabolism and renal and biliary excretion.
-
Investigational new drugs · Apr 2020
A phase 1 study of oral ASP5878, a selective small-molecule inhibitor of fibroblast growth factor receptors 1-4, as a single dose and multiple doses in patients with solid malignancies.
ASP5878 is a selective small-molecule inhibitor of fibroblast growth factor receptors (FGFRs). This study investigated safety, tolerability, and antitumor effect of single and multiple oral doses of ASP5878 in patients with solid tumors. This phase 1, open label, first-in-human study comprised dose-escalation and dose-expansion parts. ⋯ Common AEs included retinal detachment, diarrhea, and increased alanine aminotransferase. One death occurred that was not related to ASP5878. ASP5878 was well tolerated with manageable toxicities including hyperphosphatemia.
-
Investigational new drugs · Aug 2019
Mass balance, routes of excretion, and pharmacokinetics of investigational oral [14C]-alisertib (MLN8237), an Aurora A kinase inhibitor in patients with advanced solid tumors.
Aims This two-part, phase I study evaluated the mass balance, excretion, pharmacokinetics and safety of the investigational aurora A kinase inhibitor, alisertib, in three patients with advanced malignancies. Methods Part A; patients received a single 35-mg dose of [14C]-alisertib oral solution (~80 μCi total radioactivity [TRA]). Serial blood, urine, and fecal samples were collected up to 336 h post-dose for alisertib mass balance and pharmacokinetics in plasma and urine by liquid chromatography-tandem mass spectrometry, and mass balance/recovery of [14C]-radioactivity in urine and feces by liquid scintillation counting. ⋯ The most common any-grade adverse events were fatigue and alopecia. Conclusions Findings suggest that alisertib is eliminated mainly via feces, consistent with hepatic metabolism and biliary excretion of drug-related material. Further investigation of alisertib pharmacokinetics in patients with moderate-severe hepatic impairment is warranted to inform dosing recommendations in these patient populations.