Journal of pharmaceutical and biomedical analysis
-
J Pharm Biomed Anal · May 2016
A reference substance free diagnostic fragment ion-based approach for rapid identification of non-target components in Pudilan Xiaoyan oral liquid by high resolution mass spectrometry.
Rapid and reliable identification of non-target components in herbal preparations remains a primary challenge, especially when corresponding reference substances are inaccessible. In this work, an efficient post-experiment data processing methodology, named reference substance free diagnostic fragment ion (RSFDFI), was developed based on ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC/LTQ-Orbitrap). The first step of this approach was to cluster the components that share common fragment ions into several groups. ⋯ Once the structure was characterized, its common fragment ions could be used as the prior structural information to select the possible candidates that would facilitate the subsequent identification for each group. Taking Pudilan Xiaoyan oral liquid (PDL) as a model herbal preparation, which has been extensively used for the treatment of epidemic parotitis and children with hand-foot-mouth diseases, this strategy enables a nearly eight-fold narrowing of the database hits, with fifty-two components, including lignans, flavonoids, alkaloids and steroids, being rapidly identified. In conclusion, our work clearly demonstrates that integrating RSFDFI with high-resolution mass spectrometry is a powerful methodology for rapid identification of non-target components from herbal prescriptions and may open new avenues for chemical analysis in other complex mixtures.
-
J Pharm Biomed Anal · May 2016
Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats.
Previously published reports have revealed the antidepressant-like effects of icariin in a chronic mild stress model of depression and in a social defeat stress model in mice. However, the therapeutic effect of icariin in an animal model of glucocorticoid-induced depression remains unclear. This study aimed to investigate antidepressant-like effect and the possible mechanisms of icariin in a rat model of corticosterone (CORT)-induced depression by using a combination of behavioral and biochemical assessments and NMR-based metabonomics. ⋯ These biomarkers are primarily involved in energy metabolism, lipid metabolism, amino acid metabolism and gut microbe metabolism. Icariin reversed the pathological process of CORT-induced depression, partially via regulation of the disturbed metabolic pathways. These results provide important mechanistic insights into the protective effects of icariin against CORT-induced depression and metabolic dysfunction.