Journal of pharmaceutical and biomedical analysis
-
J Pharm Biomed Anal · Mar 2018
Determining particle size and water content by near-infrared spectroscopy in the granulation of naproxen sodium.
Near-infrared spectroscopy is frequently used by the pharmaceutical industry to monitor and optimize several production processes. In combination with chemometrics, a mathematical-statistical technique, the following advantages of near-infrared spectroscopy can be applied: It is a fast, non-destructive, non-invasive, and economical analytical method. One of the most advanced and popular chemometric technique is the partial least square algorithm with its best applicability in routine and its results. ⋯ The following influences should be considered for application in routine production: constant changes in water content up to 21% and a product temperature up to 54 °C. The different stages of optimization result in a "Root Mean Square Error" of 2.54% for the calibration data set and 3.53% for the validation set by using the Kubelka-Munk conversion and first derivative for the near-infrared spectroscopy method for a particle size >63 μm. For the near-infrared spectroscopy method using a particle size >100 μm, the "Root Mean Square Error" was 3.47% for the calibration data set and 4.51% for the validation set, while using the same pre-treatments. - The robustness and suitability of this methodology has already been demonstrated by its recent successful implementation in a routine granulate production process.