IEEE transactions on medical imaging
-
IEEE Trans Med Imaging · Feb 2009
Likelihood-based hypothesis tests for brain activation detection from MRI data disturbed by colored noise: a simulation study.
Functional magnetic resonance imaging (fMRI) data that are corrupted by temporally colored noise are generally preprocessed (i.e., prewhitened or precolored) prior to functional activation detection. In this paper, we propose likelihood-based hypothesis tests that account for colored noise directly within the framework of functional activation detection. Three likelihood-based tests are proposed: the generalized likelihood ratio (GLR) test, the Wald test, and the Rao test. ⋯ Results show that theoretical asymptotic distributions of the GLM, GLR, and Wald test statistics cannot be reliably used for computing thresholds for activation detection from finite length time series. Furthermore, it is shown that, for a fixed false alarm rate, the detection rate of the proposed GLR test statistic is slightly, but (statistically) significantly improved compared to that of the common GLM-based tests. Finally, simulations results reveal that all tests considered show seriously inferior performance if the order of the AR model is not chosen sufficiently high to give an adequate description of the correlation structure of the noise, whereas the effects of (slightly) overmodeling are observed to be less harmful.