IEEE transactions on medical imaging
-
IEEE Trans Med Imaging · Mar 2013
Real-time GPU-based ultrasound simulation using deformable mesh models.
This paper presents a real-time capable graphics processing unit (GPU)-based ultrasound simulator suitable for medical education. The main focus of the simulator is to synthesize realistic looking ultrasound images in real-time including artifacts, which are essential for the interpretation of this data. The simulation is based on a convolution-enhanced ray-tracing approach and uses a deformable mesh model. ⋯ The particular benefit of our method is the accurate simulation of ultrasound-specific artifacts, like range distortion, refraction and acoustic shadowing. Several test scenarios are evaluated regarding simulation time, to show the performance and the bottleneck of our method. While being computationally more intensive than slicing techniques, our simulator is able to produce high-quality images in real-time, tracing over 5000 rays through mesh models with more than 2 000 000 triangles of which up to 200 000 may be deformed each frame.