IEEE transactions on medical imaging
-
IEEE Trans Med Imaging · Jun 2020
4D Functional Imaging of the Rat Brain Using a Large Aperture Row-Column Array.
Functional ultrasound imaging (fUS) recently emerged as a promising neuroimaging modality to image and monitor brain activity based on cerebral blood volume response (CBV) and neurovascular coupling. fUS offers very good spatial and temporal resolutions compared to fMRI gold standard as well as simplicity and portability. It was recently extended to 4D fUS imaging in preclinical settings although this approach remains limited and complex. Indeed 4D fUS requires a 2D matrix probe and specific hardware able to drive the N2 elements of the probe with thousands of electronic channels. ⋯ Doppler volumes of the whole rat brain were obtained in vivo at high rates (23 dB CNR at 156 Hz and 19 dB CNR at 313 Hz). Visual and whiskers stimulations were performed and the corresponding CBV increases were reconstructed in 3D with successful functional activation detected in the superior colliculus and somato-sensorial cortex respectively. This proof of concept study demonstrates for the first time the use of a low-channel count RCA array for in vivo 4D fUS imaging in the whole rat brain.