IEEE transactions on medical imaging
-
In image-guided therapy, high-quality preoperative images serve for planning and simulation, and intraoperatively as "background", onto which models of surgical instruments or radiation beams are projected. The link between a preoperative image and intraoperative physical space of the patient is established by image-to-patient registration. In this paper, we present a novel 3-D/2-D registration method. ⋯ For the registration of 3DRX and CT images to X-ray images as few as 2-3 X-ray views were sufficient to obtain approximately 0.4 mm TREs, 7-9 mm capture range, and 80%-90% of successful registrations. To obtain similar results for MR to X-ray registrations, an image, reconstructed from at least 11 X-ray images was required. Reconstructions from more than 11 images had no effect on the registration results.
-
IEEE Trans Med Imaging · Dec 2005
Clinical TrialAutomated detection of prostatic adenocarcinoma from high-resolution ex vivo MRI.
Prostatic adenocarcinoma is the most commonly occurring cancer among men in the United States, second only to skin cancer. Currently, the only definitive method to ascertain the presence of prostatic cancer is by trans-rectal ultrasound (TRUS) directed biopsy. Owing to the poor image quality of ultrasound, the accuracy of TRUS is only 20%-25%. ⋯ In addition, the intrasystem variability (changes in CAD accuracy with changes in values of system parameters) was significantly lower than the corresponding intraobserver and interobserver variability. CAD performance was found to be very similar for different training sets. Future work will focus on extending the methodology to guide high-resolution MRI-assisted in vivo prostate biopsies.
-
IEEE Trans Med Imaging · Dec 2005
Comparative StudyComparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images.
This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. ⋯ Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.
-
IEEE Trans Med Imaging · Dec 2005
Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans.
The segmentation of the human airway tree from volumetric computed tomography (CT) images builds an important step for many clinical applications and for physiological studies. Previously proposed algorithms suffer from one or several problems: leaking into the surrounding lung parenchyma, the need for the user to manually adjust parameters, excessive runtime. Low-dose CT scans are increasingly utilized in lung screening studies, but segmenting them with traditional airway segmentation algorithms often yields less than satisfying results. ⋯ A method that conducts accurate cross-sectional airway measurements on airways is presented as an additional processing step. Measurements are conducted in the original gray-level volume. Validation on a phantom shows that subvoxel accuracy is achieved for all airway sizes and airway orientations.
-
IEEE Trans Med Imaging · Dec 2005
LetterDelay correlation subspace decomposition algorithm and its application in fMRI.
This paper reports a new delay subspace decomposition (DSD) algorithm. Instead of using the canonical zero-delay correlation matrix, the new DSD algorithm introduces a delay into the correlation matrix of the subspace decomposition to suppress noises in the data. The algorithm is applied to functional magnetic resonance imaging (fMRI) to detect the regions of focal activities in the brain. The efficiency is evaluated by comparing with independent component analysis and principal component analysis method of fMRI.