IEEE transactions on medical imaging
-
IEEE Trans Med Imaging · Apr 2007
Review Comparative StudyBrain functional localization: a survey of image registration techniques.
Functional localization is a concept which involves the application of a sequence of geometrical and statistical image processing operations in order to define the location of brain activity or to produce functional/parametric maps with respect to the brain structure or anatomy. Considering that functional brain images do not normally convey detailed structural information and, thus, do not present an anatomically specific localization of functional activity, various image registration techniques are introduced in the literature for the purpose of mapping functional activity into an anatomical image or a brain atlas. ⋯ Cortical surface registration and automatic brain labeling are some of the other tools towards establishing a fully automatic functional localization procedure. While several previous survey papers have reviewed and classified general-purpose medical image registration techniques, this paper provides an overview of brain functional localization along with a survey and classification of the image registration techniques related to this problem.
-
IEEE Trans Med Imaging · Dec 1999
ReviewConfidence maps and confidence intervals for near infrared images in breast cancer.
This paper extends basic concepts of statistical hypothesis testing and confidence intervals to images generated by a new procedure for near infrared spectroscopic tomography being developed for use in breast cancer diagnosis. By estimating the covariance matrix of the pixels of an image from data used in the image reconstruction process, confidence maps for statistical tests on individual pixels and confidence intervals for entire images are displayed as an aid to research and clinical personnel interpreting possibly noisy images. The methods are applied to simulated and phantom-based images.
-
IEEE Trans Med Imaging · Aug 1997
ReviewMultishot rosette trajectories for spectrally selective MR imaging.
In nuclear magnetic resonance, different spectral components often correspond to different chemical species and as such, spectral selectivity can be a valuable tool for diagnostic imaging. In the work presented here, a multishot image acquisition method based upon rosette K-space trajectories has been developed and implemented for spectrally selective magnetic resonance imaging (MRI). Parametric forms for the gradient waveforms and design constraints are derived, and an example multishot gradient design is presented. ⋯ A method by which acquisitions are delayed by small amounts is introduced to further reduce the residual intensity for off-resonant signals. An image reconstruction method based on convolution gridding, including a correction method for small amounts of magnetic field inhomogeneity, is implemented. Finally, the spectral selectivity is demonstrated in vivo in a study in which both water and lipid images are generated from a single imaging data set.