IEEE transactions on medical imaging
-
IEEE Trans Med Imaging · Apr 2019
Knowledge-based Collaborative Deep Learning for Benign-Malignant Lung Nodule Classification on Chest CT.
The accurate identification of malignant lung nodules on chest CT is critical for the early detection of lung cancer, which also offers patients the best chance of cure. Deep learning methods have recently been successfully introduced to computer vision problems, although substantial challenges remain in the detection of malignant nodules due to the lack of large training data sets. In this paper, we propose a multi-view knowledge-based collaborative (MV-KBC) deep model to separate malignant from benign nodules using limited chest CT data. ⋯ We tested our method on the benchmark LIDC-IDRI data set and compared it to the five state-of-the-art classification approaches. Our results show that the MV-KBC model achieved an accuracy of 91.60% for lung nodule classification with an AUC of 95.70%. These results are markedly superior to the state-of-the-art approaches.
-
Over past several years, machine learning, or more generally artificial intelligence, has generated overwhelming research interest and attracted unprecedented public attention. As tomographic imaging researchers, we share the excitement from our imaging perspective [item 1) in the Appendix], and organized this special issue dedicated to the theme of "Machine learning for image reconstruction." This special issue is a sister issue of the special issue published in May 2016 of this journal with the theme "Deep learning in medical imaging" [item 2) in the Appendix]. ⋯ These two special issues are highly complementary, since image reconstruction and image analysis are two of the main pillars for medical imaging. Together we cover the whole workflow of medical imaging: from tomographic raw data/features to reconstructed images and then extracted diagnostic features/readings.
-
IEEE Trans Med Imaging · Jun 2018
Deep Learning Computed Tomography: Learning Projection-Domain Weights From Image Domain in Limited Angle Problems.
In this paper, we present a new deep learning framework for 3-D tomographic reconstruction. To this end, we map filtered back-projection-type algorithms to neural networks. However, the back-projection cannot be implemented as a fully connected layer due to its memory requirements. ⋯ Evaluation is performed numerically on a public data set in a limited angle setting showing a consistent improvement over analytical algorithms while keeping the same computational test-time complexity by design. In the region of interest, the peak signal-to-noise ratio has increased by 23%. In addition, we show that the learned algorithm can be interpreted using known concepts from cone beam reconstruction: the network is able to automatically learn strategies such as compensation weights and apodization windows.
-
We propose the Learned Primal-Dual algorithm for tomographic reconstruction. The algorithm accounts for a (possibly non-linear) forward operator in a deep neural network by unrolling a proximal primal-dual optimization method, but where the proximal operators have been replaced with convolutional neural networks. The algorithm is trained end-to-end, working directly from raw measured data and it does not depend on any initial reconstruction such as filtered back-projection (FBP). ⋯ For the Shepp-Logan phantom we obtain >6 dB peak signal to noise ratio improvement against all compared methods. For human phantoms the corresponding improvement is 6.6 dB over TV and 2.2 dB over learned post-processing along with a substantial improvement in the structural similarity index. Finally, our algorithm involves only ten forward-back-projection computations, making the method feasible for time critical clinical applications.
-
IEEE Trans Med Imaging · Jan 2018
Automatic Localization of the Needle Target for Ultrasound-Guided Epidural Injections.
Accurate identification of the needle target is crucial for effective epidural anesthesia. Currently, epidural needle placement is administered by a manual technique, relying on the sense of feel, which has a significant failure rate. Moreover, misleading the needle may lead to inadequate anesthesia, post dural puncture headaches, and other potential complications. ⋯ Experimental results of the target localization on planes of 3-D as well as 2-D images have been compared against an expert sonographer. When compared with the expert annotations, the average lateral and vertical errors on the planes of 3-D test data were 1 and 0.4 mm, respectively. On 2-D test data set, an average lateral error of 1.7 mm and vertical error of 0.8 mm were acquired.