Molecular pharmacology
-
Molecular pharmacology · Sep 1998
Regulation of rat hepatic cytochrome P450 expression by sterol biosynthesis inhibition: inhibitors of squalene synthase are potent inducers of CYP2B expression in primary cultured rat hepatocytes and rat liver.
The effects of treatment with squalestatin 1, a potent inhibitor of squalene synthase, the first committed enzyme of sterol biosynthesis, were examined on cytochrome P450 expression in primary cultured rat hepatocytes and rat liver. Incubation of cultured hepatocytes with squalestatin 1 caused marked accumulations (maximal elevations that were approximately 25-100% of phenobarbital-elicited increases) of CYP2B mRNA and immunoreactive protein but not of CYP1A, CYP3A, or CYP4A. Squalestatin 1 treatment increased CYP2B and 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA content in hepatocyte cultures with comparable potencies (ED50 = 5.0 and 18 nM, respectively), and significantly induced CYP2B (mRNA, immunoreactive protein, and pentoxyresorufin O-dealkylase activity) in the livers of treated rats, producing maximal increases at a dose of 25 mg/kg/day that were approximately 32-87% of phenobarbital-induced increases. ⋯ Coincubation of cultured hepatocytes with 25-hydroxycholesterol suppressed squalestatin 1-mediated CYP2B and 3-hydroxy-3-methylglutaryl coenzyme A mRNA induction with approximately the same potency. Treatment of cultures with SQ-34919, a structurally distinct squalene synthase inhibitor, produced the same selective CYP2B mRNA induction as did squalestatin 1. These results suggest that inhibition of hepatic sterol synthesis activates processes that culminate in increased CYP2B gene transcription.