Molecular pharmacology
-
Molecular pharmacology · Aug 2003
Isoflurane and propofol inhibit voltage-gated sodium channels in isolated rat neurohypophysial nerve terminals.
Mounting electrophysiological evidence indicates that certain general anesthetics, volatile anesthetics in particular, depress excitatory synaptic transmission by presynaptic mechanisms. We studied the effects of representative general anesthetics on voltage-gated Na+ currents (INa) in nerve terminals isolated from rat neurohypophysis using patch-clamp electrophysiological analysis. Both isoflurane and propofol inhibited INa in a dose-dependent and reversible manner. ⋯ Marked effects on the voltage dependence and kinetics of inactivation and minimal effects on activation support preferential anesthetic interactions with the fast inactivated state of the Na+ channel. These results are consistent with direct inhibition of oxytocin and vasopressin release from the neurohypophysis by isoflurane and propofol. Inhibition of voltage-gated Na+ channels may contribute to the presynaptic effects of general anesthetics on nerve terminal excitability and neurotransmitter release.
-
Molecular pharmacology · Aug 2003
Painful inflammation-induced increase in mu-opioid receptor binding and G-protein coupling in primary afferent neurons.
Opioids mediate their analgesic effects by activating mu-opioid receptors (MOR) not only within the central nervous system but also on peripheral sensory neurons. The peripheral analgesic effects of opioids are best described under inflammatory conditions (e.g., arthritis). The present study investigated the effects of inflammation on MOR binding and G-protein coupling of full versus partial MOR agonists in dorsal root ganglia (DRG) of primary afferent neurons. ⋯ In behavioral studies, administration of BUP produced significant antinociception only in inflamed but not in noninflamed paws. These findings show that inflammation causes changes in MOR binding and G-protein coupling in primary afferent neurons. They further underscore the important differences in clinical studies testing peripherally active opioids in inflammatory painful conditions.