Molecular pharmacology
-
Molecular pharmacology · Jul 2011
Occupation of either site for the neurosteroid allopregnanolone potentiates the opening of the GABAA receptor induced from either transmitter binding site.
Potentiating neuroactive steroids are potent and efficacious modulators of the GABA(A) receptor that act by allosterically enhancing channel activation elicited by GABA. Steroids interact with the membrane-spanning domains of the α subunits of the receptor, whereas GABA binds to pockets in the interfaces between β and α subunits. Steroid interaction with a single site is known to be sufficient to produce potentiation, but it is not clear whether effects within the same β-α pair mediate potentiation. ⋯ For that, we used receptors formed of mutated concatenated subunits to selectively eliminate one of the two GABA sites and one of the two steroid sites. The data demonstrate that receptors containing a single functional GABA site are potentiated by the neurosteroid allopregnanolone regardless of whether the steroid interacts with the α subunit from the same or the other β-α pair. We conclude that steroids potentiate the opening of the GABA(A) receptor induced by either agonist binding site.
-
Molecular pharmacology · Jul 2011
Desensitization of transient receptor potential ankyrin 1 (TRPA1) by the TRP vanilloid 1-selective cannabinoid arachidonoyl-2 chloroethanolamine.
Recent studies on cannabinoid-induced analgesia implicate certain transient receptor potential (TRP) channels as a therapeutic target along with metabotropic cannabinoid receptors. Although TRP ankyrin 1 (TRPA1)-selective cannabinoids, such as (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo-[1,2,3-d,e]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone (WIN55,212), are effective at desensitizing TRPA1 and TRP vanilloid 1 (TRPV1), there is a gap in knowledge in understanding the opposite situation, namely whether TRPV1-selective cannabinoids desensitize TRPA1. We selected the TRPV1-specific synthetic cannabinoid, arachidonoyl-2 chloroethanolamine (ACEA), to study peripheral antihyperalgesic properties because ACEA is known to activate TRPV1. ⋯ Our results demonstrate that 1) ACEA significantly attenuated (∼40%) MO-evoked CGRP release from rat hindpaw skin, and this effect was not antagonized by the TRPV1 antagonist, capsazepine; 2) ACEA significantly inhibited (∼40%) MO-induced nocifensive behavior in wild-type mice but not in TRPV1 knockout mice; and 3) all TRPV1 mutations insensitive to ACEA lacked the ability to inhibit MO-evoked calcium accumulation in Chinese hamster ovary cells transfected with TRPV1 and TRPA1. Taken together, the results indicate that a TRPV1-selective cannabinoid, ACEA, inhibits MO-evoked responses via a TRPV1-dependent mechanism. This study strengthens the hypothesis that cannabinoids mediate their peripheral analgesic properties, at least in part, via the TRP channels.