Molecular pharmacology
-
Molecular pharmacology · Jun 2013
State-dependent etomidate occupancy of its allosteric agonist sites measured in a cysteine-substituted GABAA receptor.
A central axiom of ligand-receptor theory is that agonists bind more tightly to active than to inactive receptors. However, measuring agonist affinity in inactive receptors is confounded by concomitant activation. We identified a cysteine substituted mutant γ-aminobutyric acid type A (GABAA) receptor with unique characteristics allowing the determination of allosteric agonist site occupancy in both inactive and active receptors. ⋯ The 50% protective etomidate concentration (PC50) is 14 μM in inactive receptors and 1.1 to 2.2 μM during GABA-activation, experimentally demonstrating that activated receptors bind etomidate more avidly than do inactive receptors. The experimental PC50 values are remarkably close to, and therefore validate, MWC model predictions for etomidate dissociation constants in both inactive and active receptors. Our results support MWC models as valid frameworks for understanding the agonism, coagonism, and modulation of ligand-gated ion channels.
-
Molecular pharmacology · Jun 2013
Repressive epigenetic changes at the mGlu2 promoter in frontal cortex of 5-HT2A knockout mice.
Serotonin 5-HT(2A) and metabotropic glutamate 2 (mGlu2) are G protein-coupled receptors suspected in the pathophysiology of psychiatric disorders, such as schizophrenia, depression, and suicide. Previous findings demonstrate that mGlu2 mRNA expression is down-regulated in brain cortical regions of 5-HT2A knockout (KO) mice. However, the molecular mechanism responsible for this alteration remains unknown. ⋯ We found that Egr1, a transcription factor in which promoter activity was positively regulated by the 5-HT(2A) receptor agonist 4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine hydrobromide, binds less to the mGlu2 promoter in frontal cortex of 5-HT(2A)-KO, compared with wild-type mice. Furthermore, expression of mGlu2 was increased by viral-mediated gene transfer of FLAG-tagged Egr1 in mouse frontal cortex. Together, these observations suggest that 5-HT(2A) receptor-dependent signaling epigenetically affects mGlu2 transcription in mouse frontal cortex.