Molecular pharmacology
-
Molecular pharmacology · Jun 2013
State-dependent etomidate occupancy of its allosteric agonist sites measured in a cysteine-substituted GABAA receptor.
A central axiom of ligand-receptor theory is that agonists bind more tightly to active than to inactive receptors. However, measuring agonist affinity in inactive receptors is confounded by concomitant activation. We identified a cysteine substituted mutant γ-aminobutyric acid type A (GABAA) receptor with unique characteristics allowing the determination of allosteric agonist site occupancy in both inactive and active receptors. ⋯ The 50% protective etomidate concentration (PC50) is 14 μM in inactive receptors and 1.1 to 2.2 μM during GABA-activation, experimentally demonstrating that activated receptors bind etomidate more avidly than do inactive receptors. The experimental PC50 values are remarkably close to, and therefore validate, MWC model predictions for etomidate dissociation constants in both inactive and active receptors. Our results support MWC models as valid frameworks for understanding the agonism, coagonism, and modulation of ligand-gated ion channels.
-
Molecular pharmacology · Jun 2013
Repressive epigenetic changes at the mGlu2 promoter in frontal cortex of 5-HT2A knockout mice.
Serotonin 5-HT(2A) and metabotropic glutamate 2 (mGlu2) are G protein-coupled receptors suspected in the pathophysiology of psychiatric disorders, such as schizophrenia, depression, and suicide. Previous findings demonstrate that mGlu2 mRNA expression is down-regulated in brain cortical regions of 5-HT2A knockout (KO) mice. However, the molecular mechanism responsible for this alteration remains unknown. ⋯ We found that Egr1, a transcription factor in which promoter activity was positively regulated by the 5-HT(2A) receptor agonist 4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine hydrobromide, binds less to the mGlu2 promoter in frontal cortex of 5-HT(2A)-KO, compared with wild-type mice. Furthermore, expression of mGlu2 was increased by viral-mediated gene transfer of FLAG-tagged Egr1 in mouse frontal cortex. Together, these observations suggest that 5-HT(2A) receptor-dependent signaling epigenetically affects mGlu2 transcription in mouse frontal cortex.
-
Molecular pharmacology · May 2013
ReviewCellular mechanisms of nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor regulation and heterologous regulation by N/OFQ.
The nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor is the fourth and most recently discovered member of the opioid receptor superfamily that also includes μ, δ, and κ opioid receptor subtypes (MOR, DOR, and KOR, respectively). The widespread anatomic distribution of the NOP receptor enables the modulation of several physiologic processes by its endogenous agonist, N/OFQ. ⋯ Mounting evidence reveals a heterologous interaction of the NOP receptor with other G protein-coupled receptors, including MOR, DOR, and KOR, which may subsequently influence their function. Our focus in this review is to summarize and discuss the findings that delineate the cellular mechanisms of NOP receptor signaling and regulation and the regulation of other receptors by N/OFQ and the NOP receptor.
-
Molecular pharmacology · May 2013
Sensory nerve terminal mitochondrial dysfunction activates airway sensory nerves via transient receptor potential (TRP) channels.
Mitochondrial dysfunction and subsequent oxidative stress has been reported for a variety of cell types in inflammatory diseases. Given the abundance of mitochondria at the peripheral terminals of sensory nerves and the sensitivity of transient receptor potential (TRP) ankyrin 1 (A1) and TRP vanilloid 1 (V1) to reactive oxygen species (ROS) and their downstream products of lipid peroxidation, we investigated the effect of nerve terminal mitochondrial dysfunction on airway sensory nerve excitability. Here we show that mitochondrial dysfunction evoked by acute treatment with antimycin A (mitochondrial complex III Qi site inhibitor) preferentially activated TRPA1-expressing "nociceptor-like" mouse bronchopulmonary C-fibers. ⋯ Scavenging of both superoxide and hydrogen peroxide inhibited TRPA1 activation following mitochondrial modulation. In conclusion, we present evidence that acute mitochondrial dysfunction activates airway sensory nerves preferentially via TRPA1 through the actions of mitochondrially-derived ROS. This represents a novel mechanism by which inflammation may be transduced into nociceptive electrical signaling.
-
Molecular pharmacology · Apr 2013
Phosphodiesterase 4 inhibitors augment the ability of formoterol to enhance glucocorticoid-dependent gene transcription in human airway epithelial cells: a novel mechanism for the clinical efficacy of roflumilast in severe chronic obstructive pulmonary disease.
Post-hoc analysis of two phase III clinical studies found that the phosphodiesterase 4 (PDE4) inhibitor, roflumilast, reduced exacerbation frequency in patients with severe chronic obstructive pulmonary disease (COPD) who were taking inhaled corticosteroids (ICS) concomitantly, whereas patients not taking ICS derived no such benefit. In contrast, in two different trials also performed in patients with severe COPD, roflumilast reduced exacerbation rates in the absence of ICS, indicating that PDE4 inhibition alone is sufficient for therapeutic activity to be realized. Given that roflumilast is recommended as an "add-on" medication to patients with severe disease who will inevitably be taking a long-acting β2-adrenoceptor agonist (LABA)/ICS combination therapy, we tested the hypothesis that roflumilast augments the ability of glucocorticoids to induce genes with anti-inflammatory activity. ⋯ In BEAS-2B cells and primary airway epithelia, roflumilast interacted with formoterol in a positive cooperative manner to enhance the expression of several glucocorticoid-inducible genes that have anti-inflammatory potential. We suggest that the ability of roflumilast and formoterol to interact in this way supports the concept that these drugs together may impart clinical benefit beyond that achievable by an ICS alone, a PDE4 inhibitor alone, or an ICS/LABA combination therapy. Roflumilast may, therefore, be especially effective in patients with severe COPD.