Resuscitation
-
We and others hypothesized that noxious substances released after prolonged cardiac arrest from malfunctioning liver, kidneys, or intestine (e.g. bacterial toxins, aromatic amino acids), might hamper recovery of the brain. The highly detoxifying effect of hemabsorption (i.e. hemoperfusion) with microencapsulated activated carbon has been demonstrated in other diseases. We used our dog model of ventricular fibrillation cardiac arrest of 15 min (n = 2 x 4) or 12.5 min (n = 2 x 6), reversed by brief (high flow) cardiopulmonary bypass (CPB). ⋯ Outcome in terms of overall performance categories and neurologic deficit scores from 24 to 96 h and brain histopathologic damage scores 96 h after cardiac arrest, were not significantly different between groups. The lack of a beneficial outcome effect of hemabsorption to 4 h after cardiac arrest does not support the self-intoxication hypothesis. The amino acid levels later after cardiac arrest suggest that more prolonged hemabsorption and more encompassing detoxification treatments, such as plasma phoresis or total body blood washout, might be evaluated.
-
Previous studies have demonstrated that brain protein synthesis declines after global ischemia and reperfusion. To investigate the role of the translation system in this phenomenon, we examined the ability of partially purified ribosomes, ribosome-bound mRNA and translation cofactors derived from the transiently ischemic cerebral cortex to synthesize protein in vitro. Samples were prepared from canines subjected to 20-min cardiac arrest and after 2 or 8 h of post-resuscitation intensive care. ⋯ However, mRNA for heat shock 70 protein (hsp-70) was observed only during reperfusion and markedly increased between 2 and 8 h reperfusion. Thus, we conclude that (1) the transcription system is intact during reperfusion and hsp-70 mRNA is made and translocated to the ribosomes during reperfusion, (2) mRNA for ck-bb is not displaced from ribosomes by the appearance of hsp-70 during reperfusion and (3) isolated ribosomes maintain their ability to translate in vitro during the first 8 h of reperfusion after global brain ischemia. Therefore, the early reduction in protein synthesis observed in vivo during post-ischemic brain reperfusion is not due to an intrinsic dysfunction of the ribosomes.