Resuscitation
-
Randomized Controlled Trial Clinical Trial
Incomplete chest wall decompression: a clinical evaluation of CPR performance by EMS personnel and assessment of alternative manual chest compression-decompression techniques.
Complete chest wall recoil improves hemodynamics during cardiopulmonary resuscitation (CPR) by generating relatively negative intrathoracic pressure and thus draws venous blood back to the heart, providing cardiac preload prior to the next chest compression phase. ⋯ Incomplete chest wall decompression was observed at some time during resuscitative efforts in 6 (46%) of 13 consecutive adult out-of-hospital cardiac arrests. The Hands-Off Technique decreased compression duty cycle but was 129 times more likely to provide complete chest wall recoil (OR: 129.0; CI: 43.4-382.0) compared to the Standard Hand Position without differences in accuracy of hand placement, depth of compression, or reported increase in fatigue or discomfort with its use. All forms of manual CPR tested (including the Standard Hand Position) in professional EMS rescuers using a recording manikin produced an inadequate depth of compression more than half the time. These data support development and testing of more effective means to deliver manual as well as mechanical CPR.
-
Stagnant survival rates in out-of-hospital cardiac arrest remain a great impetus for advancing resuscitation science. International resuscitation guidelines, with all their advantages for standardizing resuscitation therapeutic protocols, can be difficult to change. A formalized evidence-based process has been adopted by the International Liason Committee on Resuscitation (ILCOR) in formulating such guidelines. ⋯ In Tucson, Arizona (USA), the Fire Department cardiac arrest database has revealed a number of resuscitation issues. These include a poor bystander CPR rate, a lack of response to initial defibrillation after prolonged ventricular fibrillation, and substantial time without chest compressions during the resuscitation effort. A local change in our previous resuscitation protocols had been instituted based upon this historical database information.
-
Cardiac arrest is responsible for significant morbidity and mortality, with consistently poor outcomes despite the rapid availability of prehospital personnel for defibrillation attempts in patients with ventricular fibrillation (VF). Recent evidence suggests a period of cardiopulmonary resuscitation (CPR) prior to defibrillation attempts may improve outcomes in patients with moderate time since collapse (4-10 min). ⋯ The performance of bystander CPR prior to defibrillation by EMS personnel is associated with improved survival among patients with time since collapse longer than 4 min but not less than 4 min. These data are consistent with the three-phase model of cardiac arrest.
-
From April 2000 to November 2002, the Department of Health (England) placed 681 automated external defibrillators (AEDs) in 110 public places for use by volunteer lay first responders. An audit has been undertaken of the first 250 deployments, of which 182 were for confirmed cardiac arrest. Of these, 177 were witnessed whilst 5 occurred in situations that were remote or initially inaccessible to the responders. ⋯ When data quality permitted, the downloads were analysed with special reference to the numbers of compressions given and also to interruptions in compression sequences for ventilations, for rhythm analysis by the AED, for clinical checks, and for unexplained operator delays. The average rate of compressions during sequences was 120 min(-1), but because of interruptions, the actual number administered over a full minute from the first CPR prompt was a median of only 38. The speed of response by the lay first responders in relation to AED use was similar to that reported for healthcare professionals.
-
In 1982 the Netherlands made a unilateral decision to change the established airway-breathing-circulation (ABC) training sequence to a different approach that stressed efficiency in diagnosis and treatment. This Dutch approach became known as the CAB (circulation-airway-breathing) sequence. Twenty years later, being confronted with the new international guidelines (published 2000) that still use the ABC approach, the Netherlands Resuscitation Council (NRR) questioned again the validity of our persistence in using the "Dutch variant" of resuscitation. ⋯ This article restates the main rationale and arguments behind the original decision to change to a Dutch (CAB) version of resuscitation over 20 years ago. The national decision to adopt the ABC approach once again was mainly to prevent resuscitation in the Netherlands from being isolated from the rest of the world and was not based on present knowledge of physiology and resuscitation. The authors hope that this article will open the discussion once again.