Resuscitation
-
Cardiac arrest is responsible for significant morbidity and mortality, with consistently poor outcomes despite the rapid availability of prehospital personnel for defibrillation attempts in patients with ventricular fibrillation (VF). Recent evidence suggests a period of cardiopulmonary resuscitation (CPR) prior to defibrillation attempts may improve outcomes in patients with moderate time since collapse (4-10 min). ⋯ The performance of bystander CPR prior to defibrillation by EMS personnel is associated with improved survival among patients with time since collapse longer than 4 min but not less than 4 min. These data are consistent with the three-phase model of cardiac arrest.
-
Randomized Controlled Trial Clinical Trial
Incomplete chest wall decompression: a clinical evaluation of CPR performance by EMS personnel and assessment of alternative manual chest compression-decompression techniques.
Complete chest wall recoil improves hemodynamics during cardiopulmonary resuscitation (CPR) by generating relatively negative intrathoracic pressure and thus draws venous blood back to the heart, providing cardiac preload prior to the next chest compression phase. ⋯ Incomplete chest wall decompression was observed at some time during resuscitative efforts in 6 (46%) of 13 consecutive adult out-of-hospital cardiac arrests. The Hands-Off Technique decreased compression duty cycle but was 129 times more likely to provide complete chest wall recoil (OR: 129.0; CI: 43.4-382.0) compared to the Standard Hand Position without differences in accuracy of hand placement, depth of compression, or reported increase in fatigue or discomfort with its use. All forms of manual CPR tested (including the Standard Hand Position) in professional EMS rescuers using a recording manikin produced an inadequate depth of compression more than half the time. These data support development and testing of more effective means to deliver manual as well as mechanical CPR.
-
From April 2000 to November 2002, the Department of Health (England) placed 681 automated external defibrillators (AEDs) in 110 public places for use by volunteer lay first responders. An audit has been undertaken of the first 250 deployments, of which 182 were for confirmed cardiac arrest. Of these, 177 were witnessed whilst 5 occurred in situations that were remote or initially inaccessible to the responders. ⋯ When data quality permitted, the downloads were analysed with special reference to the numbers of compressions given and also to interruptions in compression sequences for ventilations, for rhythm analysis by the AED, for clinical checks, and for unexplained operator delays. The average rate of compressions during sequences was 120 min(-1), but because of interruptions, the actual number administered over a full minute from the first CPR prompt was a median of only 38. The speed of response by the lay first responders in relation to AED use was similar to that reported for healthcare professionals.
-
During CPR, an inspiratory time of 2 s is recommended when the airway is unprotected; indicating that approximately 30% of the resuscitation attempt is spent on ventilation, but not on chest compressions. Since survival rates may not decrease when ventilation levels are relatively low, and uninterrupted chest compressions with a constant rate of approximately 100/min have been shown to be lifesaving, it may be beneficial to cut down the time spent on ventilation, and instead, increase the time for chest compressions. In an established bench model of a simulated unprotected airway, we evaluated if inspiratory time can be decreased from 2 to 1 s at different lower oesophageal sphincter pressure (LOSP) levels during ventilation with a bag-valve-mask device. ⋯ Total cumulative stomach inflation volume over constantly decreasing LOSP levels with an inspiratory time of 2 s versus 1 s was higher (6820 ml versus 5920 ml). In conclusion, in this model of a simulated unprotected airway, a reduction of inspiratory time from 2 to 1 s resulted in a significant increase of peak airway pressure and peak inspiratory flow rate, while lung tidal volumes remained clinically comparable (up to approximately 15% difference), but statistically different due to the precise measurements. Theoretically, this may increase the time available for, and consequently the actual number of, chest compressions during CPR by approximately 25% without risking an excessive increase in stomach inflation.