Journal of orthopaedic research : official publication of the Orthopaedic Research Society
-
Flexible fixation of fractures with minimally invasive surgical techniques has become increasingly popular. Such techniques can lead to relatively large fracture gaps (larger than 5 mm) and considerable interfragmentary movements (0.2-5 mm). We investigated the influence of the size of the fracture gap, interfragmentary movement, and interfragmentary strain on the quality of fracture healing. ⋯ Larger interfragmentary movements and strains (31 compared with 7%) stimulated larger callus formation for small gaps (1-2 mm) but not for larger gaps (approximately 6 mm). The treatment of simple diaphyseal fractures with flexible fixation can be improved by careful reduction of the fracture; this prevents large interfragmentary gaps. The experimental fracture model for the metatarsus showed that the healing process was inferior when the gap was larger than 2 mm.
-
The purpose of our investigation was to determine if the near infrared spectroscopy technique was sensitive to changes in tissue oxygenation at low levels of isometric contraction in the extensor carpi radialis brevis muscle. Nine subjects were seated with the right arm abducted to 45 degrees, elbow flexed to 85 degrees, forearm pronated 45 degrees, and wrist and forearm supported on an armrest throughout the protocol. Altered tissue oxygenation was measured noninvasively with near infrared spectroscopy. ⋯ Tissue oxygenation levels at 10, 15, and 50% of the maximum voluntary contraction were significantly lower (p < 0.05) than the baseline value. Our results indicate that tissue oxygenation significantly decreases during brief, low levels of static muscle contraction and that near infrared spectroscopy is a sensitive technique for detecting deoxygenation noninvasively at low levels of forearm muscle contraction. Our findings have important implications in occupational medicine because oxygen depletion induced by low levels of muscle contraction may be directly linked to muscle fatigue.