Journal of orthopaedic research : official publication of the Orthopaedic Research Society
-
Quantitative magnetic resonance imaging (MRI) techniques have been developed for noninvasive assessment of the structure of articular cartilage. T2 relaxation time is sensitive to the integrity and orientation of the collagen network, while T1 relaxation time in presence of Gd-DTPA2- (dGEMRIC) reflects the proteoglycan content of cartilage. In the present study, human patellar cartilage samples were investigated in vitro to determine the ability of MRI parameters to reveal topographical variations and to predict mechanical properties of cartilage at two different field strengths. ⋯ No significant difference was found between the T2 measurements at different field strengths in predicting mechanical properties of the tissue. Topographical variation of T2 values at both field strengths was similar to that of Young's moduli. The current results demonstrate the feasibility of quantitative MRI, particularly T2 mapping, to reflect the mechanical properties of human patellar cartilage at both field strengths.
-
Comparative Study
Interpretation of surface EMGs in children with cerebral palsy: An initial study using a fuzzy expert system.
Surface EMG detected simultaneously at different muscles has become an important tool for analysing the gait of children with cerebral palsy (CP), as it offers essential information about muscular coordination. However, the interpretation of surface EMG is a difficult task that assumes extensive knowledge and experience. As such, this noninvasive procedure is not frequently used in the general clinical routine. ⋯ In 23 cases (20%) the predictions of the expert system differed from the clinical findings with 12 cases revealing worse and 11 cases revealing better results in comparison to the clinical findings. As this study is a first attempt to verify the feasibility and correctness of this expert system, the results are promising. Further study is required to assess the correlation with the kinematic data and to include the whole leg.