Journal of orthopaedic research : official publication of the Orthopaedic Research Society
-
The purpose of this article was to evaluate the potential of in vivo zonal T2-mapping as a noninvasive tool in the longitudinal visualization of cartilage repair tissue maturation after matrix-associated autologous chondrocyte transplantation (MACT). Fifteen patients were treated with MACT and evaluated cross-sectionally, with a baseline MRI at a follow-up of 19.7 +/- 12.1 months after cartilage transplantation surgery of the knee. In the same 15 patients, 12 months later (31.7 +/- 12.0 months after surgery), a longitudinal 1-year follow-up MRI was obtained. ⋯ Morphological evaluation showed no significant difference between the baseline and the 1-year follow-up MRI. T2 mapping seems to be more sensitive in revealing changes in the repair tissue compared to morphological MRI. In vivo zonal T2 assessment may be sensitive enough to characterize the maturation of cartilage repair tissue.
-
While many studies have focused on modulating the immune response and enhancing axonal regeneration after spinal cord injury (SCI), there is limited work being performed on evaluating the role of glial scar in SCI. We sought to evaluate the effects of glial scar resection in contusion models and dorsal hemisection models of SCI. At 1-week postinjury, 2 mm of glial scar was excised from specimens in one of the two groups from each injury model. ⋯ Histological analysis revealed no axons within the glial resection contusion model, and moderate axonal growth within the nonresection contusion group and both hemisection groups (p > 0.05 for differences among the three groups). While glial scar may serve to stabilize the preserved axonal tracts and thereby permit modest recovery in a contusion model of SCI, it may be of less importance with a dorsal hemisection model. These experiments highlight that basic biologic processes following SCI may vary tremendously based on the injury mechanism and that the role of glial scar in spinal cord regeneration must be elucidated.
-
Fracture healing can be enhanced by load bearing, but the specific components of the mechanical environment which can augment or accelerate the process remain unknown. The ability of low-magnitude, high-frequency mechanical signals, anabolic in bone tissue, are evaluated here for their ability to influence fracture healing. The potential for short duration (17 min), extremely low-magnitude (25 microm), high-frequency (30 Hz) interfragmentary displacements to enhance fracture healing was evaluated in a mid-diaphyseal, 3-mm osteotomy of the sheep tibia. In a pilot study of proof of concept and clinical relevance, healing in osteotomies stabilized with rigid external fixation (Control: n = 4), were compared to the healing status of osteotomies with the same stiffness of fixation, but supplemented with daily mechanical loading ( ⋯ n = 4). These 25-microm displacements, induced by a ferroactive shape-memory alloy ("smart" material) incorporated into the body of the external fixator, were less than 1% of the 3-mm fracture gap, and less than 6% of the 0.45-mm displacement measured at the site during ambulation (p < 0.001). At 10-weeks post-op, the callus in the EXPERIMENTAL group was 3.6-fold stiffer (p < 0.03), 2.5-fold stronger (p = 0.05), and 29% larger (p < 0.01) than Controls. Bone mineral content was 52% greater in the EXPERIMENTAL group (p < 0.02), with a 2.6-fold increase in bone mineral content (BMC) in the region of the periosteum (p < 0.001). These data reinforce the critical role of mechanical factors in the enhancement of fracture healing, and emphasize that the signals need not be large to be influential and potentially clinically advantageous to the restoration of function.