Journal of orthopaedic research : official publication of the Orthopaedic Research Society
-
As human lifespan increases so does the incidence of age-associated degenerative joint diseases, resulting in significant negative socioeconomic consequences. Osteoarthritis (OA) and intervertebral disc degeneration (IDD) are the most common underlying causes of joint-related chronic disability and debilitating pain in the elderly. Current treatment methods are generally not effective and involve either symptomatic relief with non-steroidal anti-inflammatory drugs and physical therapy or surgery when conservative treatments fail. ⋯ Studies over the past decades have uncovered a number of important molecular and cellular changes in joint tissues with age. However, the precise causes of damage, cellular targets of damage, and cellular responses to damage remain poorly understood. The objectives of this review are to provide an overview of the current knowledge about the sources of endogenous and exogenous damaging agents and how they contribute to age-dependent degenerative joint disease, and highlight animal models of accelerated aging that could potentially be useful for identifying causes of and therapies for degenerative joint diseases.
-
Cementation of polyethylene (PE) liners into well-fixed metal shells has become a popular option during revision total hip arthroplasty (THA) particularly for older and frail patients. Although dramatic results were reported with dual-mobility acetabular components to manage hip instability during revision THA, no study evaluated the fixation strength of the cementation of dual-mobility components into well-fixed metal shells. Eight dual-mobility and eight all-PE components were cemented into a metal shell with a uniform 2- to 3-mm cement mantle. ⋯ In addition, failure was always observed at the metal shell/cement interface whenever it did occur. In conclusion, a dual-mobility acetabular component cemented into a well-fixed metal shell could constitute a biomechanically acceptable alternative to acetabular shell removal or PE liner cementation while simultaneously preventing instability of the THA revision. Clinical studies are warranted.
-
Comparative Study
In vivo efficacy of fresh versus frozen osteochondral allografts in the goat at 6 months is associated with PRG4 secretion.
The long-term efficacy of osteochondral allografts is due to the presence of viable chondrocytes within graft cartilage. Chondrocytes in osteochondral allografts, especially those at the articular surface that normally produce the lubricant proteoglycan-4 (PRG4), are susceptible to storage-associated death. The hypothesis of this study was that the loss of chondrocytes within osteochondral grafts leads to decreased PRG4 secretion, after graft storage and subsequent implant. ⋯ Concomitantly, cellularity at the articular surface in FROZEN allografts was ∼96% lower than FRESH allografts and non-operated cartilage. Thus, the PRG4-secreting function of allografts appears to be maintained in vivo based on its state after storage. PRG4 secretion may be not only a useful marker of allograft performance, but also a biological process protecting the articular surface of grafts following cartilage repair.
-
The annulus fibrosus (AF) of the intervertebral disk plays a critical role in vertebral load transmission that is heavily dependent on the microscale structure and composition of the tissue. With degeneration, both structure and composition are compromised, resulting in a loss of AF mechanical function. Numerous tissue engineering strategies have addressed the issue of AF degeneration, but few have focused on recapitulation of AF microstructure and function. ⋯ Opposing bilayers, which replicate native AF structure, showed a significantly higher modulus in both testing directions compared to parallel bilayers, and reached ∼60% of native AF biaxial properties. Associated with this increase in biaxial properties, significantly less shear, and significantly higher stretch in the fiber direction, was observed. These results provide additional insight into native tissue structure-function relationships, as well as new benchmarks for engineering functional AF tissue constructs.
-
Leukocyte- and platelet-rich plasma gel (L-PRP gel), a new autologous product which was previously utilized in several surgical procedures to enhance tissue healing, is now increasingly used as a promising treatment method for infections. In this study, we investigated the antibacterial property of L-PRP gel against Methicillin-resistive Staphylococcus aureus (MRSA, ATCC 43300) in a rabbit model of osteomyelitis. Tibial osteomyelitis was induced in 40 New Zealand white rabbits using the MRSA strain. ⋯ The best therapeutic efficacy, including infection elimination and bone defect repair, was observed in the L-PRP gel + Van group. Although not comparable to vancomycin, L-PRP gel also exibited antimicrobial efficacy in vivo. We believe that a combination of L-PRP gel and antibiotics could be a favorable alternative for the treatment of osteomyelitis.