Journal of leukocyte biology
-
This study examined the role of protein phosphatase type-1 (PP1), type-2A (PP2A), and mitogen-activated protein kinase phosphatase-1 (MKP-1) in altered mesenteric lymph node (MLN) T cell function in a two-hit model of alcohol (EtOH) intoxication and burn injury. Male rats (250 g) were gavaged with EtOH to achieve a blood EtOH level of approximately 100 mg/dL prior to burn or sham injury (25% total body surface area). MLN T cells harvested 24 h after injury show a significant decrease in p38 and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation in T cells from rats receiving a combined insult of EtOH intoxication and burn injury compared with rats receiving EtOH intoxication or burn injury alone. ⋯ Furthermore, there was a significant decrease in PP1alpha phosphorylation (Thr320) and an increase in PP2A (Tyr307) phosphorylation in T cells following a combined insult of EtOH intoxication and burn injury. As phosphorylation of PP1 at Thr320 and PP2A at Tyr307 led to an inhibition of their enzymatic activities, the decrease in the PP1alpha phosphorylation correlates with an increase in its enzyme activity. Thus, these results suggest that activation of PP1 is likely to play a predominant role in T cell suppression following a combined insult of EtOH intoxication and burn injury.
-
Polymicrobial sepsis is associated with immunosuppression caused by the predominance of anti-inflammatory mediators and profound loss of lymphocytes through apoptosis. Dendritic cells (DC) are potent antigen-presenting cells and play a key role in T cell activation. We tested the hypothesis that DC are involved in sepsis-mediated immunosuppression in a mouse cecal ligation and puncture (CLP) model, which resembles human polymicrobial sepsis. ⋯ In addition, the splenic CD4+CD8- and CD4-CD8+ subpopulations were lost during sepsis, and the remaining DC showed a reduced capacity for allogeneic T cell activation associated with decreased IL-2 synthesis. Thus, during sepsis, splenic DC acquire a state of aberrant responsiveness to bacterial stimuli, and two DC subtypes are selectively lost. These changes in DC behavior might contribute to impaired host response against bacteria during sepsis.